Endlessly mono-radial annular core photonic crystal fiber for the broadband transmission and supercontinuum generation of vortex beams

We demonstrate a new guiding regime termed endlessly mono-radial, in the proposed annular core photonic crystal fiber (AC-PCF), whereby only modes of the fundamental radial order are supported by the fiber at all input wavelengths. This attribute is of high interest for applications that require the stable and broadband guiding of mono-radial (i.e. doughnut shaped) cylindrical vector beams and vortex beams carrying orbital angular momentum. We further show that one can significantly tailor the chromatic dispersion and optical nonlinearities of the waveguide through proper optimization of the photonic crystal microstructured cladding. The analytical investigation of the remarkable modal properties of the AC-PCF is validated by full-vector simulations. As an example, we performed simulations of the nonlinear fiber propagation of short femtosecond pulses at 835 nm center wavelength and kilowatt-level peak power, which indicate that the AC-PCF represents a promising avenue to investigate the supercontinuum generation of optical vortex light. The proposed fiber design has potential applications in space-division multiplexing, optical sensing and super-resolution microscopy.

[1]  Wenbo Zhang,et al.  The Orbital Angular Momentum Modes Supporting Fibers Based on the Photonic Crystal Fiber Structure , 2017 .

[2]  Rudolf Weber,et al.  Effects of Radial and Tangential Polarization in Laser Material Processing , 2011 .

[3]  L. Marrucci,et al.  Tunable supercontinuum light vector vortex beam generator using a q-plate. , 2013, Optics letters.

[4]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[5]  Xiang Li,et al.  Super-resolution radar imaging based on experimental OAM beams , 2017 .

[6]  Q. Zhan Cylindrical vector beams: from mathematical concepts to applications , 2009 .

[7]  Y. Kivshar,et al.  Supercontinuum generation with optical vortices. , 2010, Optics Express.

[8]  Junichi Hamazaki,et al.  Optical-vortex laser ablation. , 2010, Optics express.

[9]  Fang Li,et al.  Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  S. Hell,et al.  STED microscopy with a supercontinuum laser source. , 2008, Optics express.

[11]  M. Kassiou,et al.  Determination and reduction of translocator protein (TSPO) ligand rs6971 discrimination† †The authors declare no competing interests. , 2016, MedChemComm.

[12]  T. Verbiest,et al.  Resolving enantiomers using the optical angular momentum of twisted light , 2016, Science Advances.

[13]  Kunimasa Saitoh,et al.  Empirical relations for simple design of photonic crystal fibers. , 2005, Optics express.

[14]  A. Willner,et al.  Octave-spanning supercontinuum generation of vortices in a As2S3 ring photonic crystal fiber , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[15]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[16]  Craig B. Arnold,et al.  Bessel and annular beams for materials processing , 2012 .

[17]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[18]  G. Paulus,et al.  White light generated by femtosecond optical vortex beams , 2016 .

[19]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[20]  L A Rusch,et al.  Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. , 2014, Optics express.

[21]  The Kerr Nonlinearity , 2008 .

[22]  S. Wereley,et al.  Single-image far-field subdiffraction limit imaging with axicon. , 2013, Optics letters.

[23]  J. R. Taylor,et al.  Supercontinuum Generation in Optical Fibers: Frontmatter , 2010 .

[24]  Shuisheng Jian,et al.  Broadband orbital angular momentum transmission using a hollow-core photonic bandgap fiber. , 2016, Optics letters.

[25]  Kebin Shi,et al.  Super-resolution deep imaging with hollow Bessel beam STED microscopy , 2015 .

[26]  Tanya M Monro,et al.  A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. , 2009, Optics express.

[27]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[28]  R. Glowinski,et al.  A Reliable Split-Step Fourier Method for the Propagation Equation of Ultra-Fast Pulses in Single-Mode Optical Fibers , 2013, Journal of Lightwave Technology.

[29]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[30]  R. Morita,et al.  Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion. , 2009, Optics express.

[31]  Keith J. Blow,et al.  Theoretical description of transient stimulated Raman scattering in optical fibers , 1989 .

[32]  Sophie LaRochelle,et al.  Vector Mode Analysis of Ring-Core Fibers: Design Tools for Spatial Division Multiplexing , 2014, Journal of Lightwave Technology.

[33]  S Ramachandran,et al.  On the scalability of ring fiber designs for OAM multiplexing. , 2015, Optics express.

[34]  Silvia Carrasco,et al.  Digital spiral imaging. , 2005, Optics express.

[35]  S. Barnett,et al.  Chirality and the angular momentum of light , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Leslie A. Rusch,et al.  Carrying Data on the Orbital Angular Momentum of Light , 2018, IEEE Communications Magazine.

[37]  G. Agrawal,et al.  Raman response function for silica fibers. , 2006, Optics letters.

[38]  Jian Wang,et al.  Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. , 2013, Optics letters.

[39]  Rokas Drevinskas,et al.  Single beam optical vortex tweezers with tunable orbital angular momentum , 2014 .

[40]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[41]  In-Fiber Monomode Octave-Spanning OAM Supercontinuum , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[42]  Gulcin M. Muslu,et al.  A split-step Fourier method for the complex modified Korteweg-de Vries equation☆ , 2003 .