Asymptotic preserving time-discretization of optimal control problems for the Goldstein–Taylor model
暂无分享,去创建一个
Lorenzo Pareschi | Giacomo Albi | Michael Herty | M. Herty | L. Pareschi | G. Albi | Christian Jörres | Christian Jorres
[1] Jens Lang,et al. W-methods in optimal control , 2013, Numerische Mathematik.
[2] A. Bressan,et al. Optimality Conditions for Solutions to Hyperbolic Balance Laws , 2006 .
[3] Michael Herty,et al. Time discretizations for numerical optimisation of hyperbolic problems , 2011, Appl. Math. Comput..
[4] Sonja Steffensen,et al. Numerical Methods for the Optimal Control of Scalar Conservation Laws , 2011, System Modelling and Optimization.
[5] J. M. Sanz-Serna,et al. Order conditions for canonical Runge-Kutta schemes , 1991 .
[6] Stefano Bianchini,et al. ON THE SHIFT DIFFERENTIABILITY OF THE FLOW GENERATED BY A HYPERBOLIC SYSTEM OF CONSERVATION LAWS , 2000 .
[7] J. Frédéric Bonnans,et al. Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control , 2006, Numerische Mathematik.
[8] E. Zuazua,et al. AN ALTERNATING DESCENT METHOD FOR THE OPTIMAL CONTROL OF THE INVISCID BURGERS EQUATION IN THE PRESENCE OF SHOCKS , 2008 .
[9] S. Ulbrich. Optimal control of nonlinear hyperbolic conservation laws with source terms , 2001 .
[10] Lorenzo Pareschi,et al. Numerical schemes for kinetic equations in diffusive regimes , 1998 .
[11] C. D. Levermore,et al. Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .
[12] Stefan Ulbrich. On the superlinear local convergence of a filter-SQP method , 2004, Math. Program..
[13] Michael B. Giles,et al. Analytic adjoint solutions for the quasi-one-dimensional Euler equations , 2001, Journal of Fluid Mechanics.
[14] A. Bressan,et al. Shift-differentiability of the flow generated by a conservation law , 1996 .
[15] Philippe G. LeFloch,et al. High-Order Asymptotic-Preserving Methods for Fully Nonlinear Relaxation Problems , 2012, SIAM J. Sci. Comput..
[16] Stefan Ulbrich,et al. Convergence of Linearized and Adjoint Approximations for Discontinuous Solutions of Conservation Laws. Part 2: Adjoint Approximations and Extensions , 2010, SIAM J. Numer. Anal..
[17] Fredi Tröltzsch,et al. On convergence of a receding horizon method for parabolic boundary control , 2004, Optim. Methods Softw..
[18] Simona Mancini,et al. Uniqueness and weak stability for multi-dimensional transport equations with one-sided Lipschitz coefficient , 2004, math/0403402.
[19] Sonja Steffensen,et al. Implicit-Explicit Runge-Kutta Schemes for Numerical Discretization of Optimal Control Problems , 2012, SIAM J. Numer. Anal..
[20] Lorenzo Pareschi,et al. Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..
[21] Andrea Walther,et al. Automatic differentiation of explicit Runge-Kutta methods for optimal control , 2007, Comput. Optim. Appl..
[22] Laurent Gosse,et al. Space Localization and Well-Balanced Schemes for Discrete Kinetic Models in Diffusive Regimes , 2003, SIAM J. Numer. Anal..
[23] Inmaculada Higueras,et al. Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..
[24] F. James,et al. One-dimensional transport equations with discontinuous coefficients , 1998 .
[25] M. Giles,et al. Adjoint Error Correction for Integral Outputs , 2003 .
[26] M. J,et al. RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS , 2005 .
[27] Michael Herty,et al. Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws , 2012, Comput. Optim. Appl..
[28] Michael B. Giles,et al. Analysis of the accuracy of shock-capturing in the steady quasi-1D Euler equations , 1995 .
[29] F. James,et al. Differentiability with Respect to Initial Data for a Scalar Conservation Law , 1999 .
[30] A. Bressan,et al. A variational calculus for discontinuous solutions of systems of conservation laws , 1995 .
[31] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[32] Alberto Bressan,et al. Shift Differentials of Maps in BV Spaces , 2006 .
[33] William W. Hager,et al. Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..
[34] Michael B. Giles,et al. Discrete Adjoint Approximations with Shocks , 2003 .
[35] F. Golse,et al. The nonlinear diffusion limit for generalized Carleman models: the initial-boundary value problem , 2007, math/0702705.
[36] Stefan Ulbrich,et al. Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws , 2003, Syst. Control. Lett..
[37] William W. Hager,et al. The Euler approximation in state constrained optimal control , 2001, Math. Comput..
[38] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[39] G. Russo,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .
[40] B. François,et al. Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness , 1999 .
[41] G. Russo,et al. Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .
[42] Laurent Gosse,et al. An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , 2002 .
[43] M. Carpenter,et al. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .
[44] Lorenzo Pareschi,et al. Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .
[45] Lorenzo Pareschi,et al. Numerical Schemes for Hyperbolic Systems of Conservation Laws with Stiff Diffusive Relaxation , 2000, SIAM J. Numer. Anal..
[46] William W. Hager,et al. Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.
[47] Giacomo Dimarco,et al. Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations , 2012, SIAM J. Numer. Anal..