Asymptotic preserving time-discretization of optimal control problems for the Goldstein–Taylor model

We consider the development of implicit-explicit time integration schemes for optimal control problems governed by the Goldstein–Taylor model. In the diffusive scaling, this model is a hyperbolic approximation to the heat equation. We investigate the relation of time integration schemes and the formal Chapman–Enskog-type limiting procedure. For the class of stiffly accurate implicit–explicit Runge–Kutta methods, the discrete optimality system also provides a stable numerical method for optimal control problems governed by the heat equation. Numerical examples illustrate the expected behavior. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1770–1784, 2014

[1]  Jens Lang,et al.  W-methods in optimal control , 2013, Numerische Mathematik.

[2]  A. Bressan,et al.  Optimality Conditions for Solutions to Hyperbolic Balance Laws , 2006 .

[3]  Michael Herty,et al.  Time discretizations for numerical optimisation of hyperbolic problems , 2011, Appl. Math. Comput..

[4]  Sonja Steffensen,et al.  Numerical Methods for the Optimal Control of Scalar Conservation Laws , 2011, System Modelling and Optimization.

[5]  J. M. Sanz-Serna,et al.  Order conditions for canonical Runge-Kutta schemes , 1991 .

[6]  Stefano Bianchini,et al.  ON THE SHIFT DIFFERENTIABILITY OF THE FLOW GENERATED BY A HYPERBOLIC SYSTEM OF CONSERVATION LAWS , 2000 .

[7]  J. Frédéric Bonnans,et al.  Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control , 2006, Numerische Mathematik.

[8]  E. Zuazua,et al.  AN ALTERNATING DESCENT METHOD FOR THE OPTIMAL CONTROL OF THE INVISCID BURGERS EQUATION IN THE PRESENCE OF SHOCKS , 2008 .

[9]  S. Ulbrich Optimal control of nonlinear hyperbolic conservation laws with source terms , 2001 .

[10]  Lorenzo Pareschi,et al.  Numerical schemes for kinetic equations in diffusive regimes , 1998 .

[11]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[12]  Stefan Ulbrich On the superlinear local convergence of a filter-SQP method , 2004, Math. Program..

[13]  Michael B. Giles,et al.  Analytic adjoint solutions for the quasi-one-dimensional Euler equations , 2001, Journal of Fluid Mechanics.

[14]  A. Bressan,et al.  Shift-differentiability of the flow generated by a conservation law , 1996 .

[15]  Philippe G. LeFloch,et al.  High-Order Asymptotic-Preserving Methods for Fully Nonlinear Relaxation Problems , 2012, SIAM J. Sci. Comput..

[16]  Stefan Ulbrich,et al.  Convergence of Linearized and Adjoint Approximations for Discontinuous Solutions of Conservation Laws. Part 2: Adjoint Approximations and Extensions , 2010, SIAM J. Numer. Anal..

[17]  Fredi Tröltzsch,et al.  On convergence of a receding horizon method for parabolic boundary control , 2004, Optim. Methods Softw..

[18]  Simona Mancini,et al.  Uniqueness and weak stability for multi-dimensional transport equations with one-sided Lipschitz coefficient , 2004, math/0403402.

[19]  Sonja Steffensen,et al.  Implicit-Explicit Runge-Kutta Schemes for Numerical Discretization of Optimal Control Problems , 2012, SIAM J. Numer. Anal..

[20]  Lorenzo Pareschi,et al.  Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..

[21]  Andrea Walther,et al.  Automatic differentiation of explicit Runge-Kutta methods for optimal control , 2007, Comput. Optim. Appl..

[22]  Laurent Gosse,et al.  Space Localization and Well-Balanced Schemes for Discrete Kinetic Models in Diffusive Regimes , 2003, SIAM J. Numer. Anal..

[23]  Inmaculada Higueras,et al.  Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..

[24]  F. James,et al.  One-dimensional transport equations with discontinuous coefficients , 1998 .

[25]  M. Giles,et al.  Adjoint Error Correction for Integral Outputs , 2003 .

[26]  M. J,et al.  RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS , 2005 .

[27]  Michael Herty,et al.  Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws , 2012, Comput. Optim. Appl..

[28]  Michael B. Giles,et al.  Analysis of the accuracy of shock-capturing in the steady quasi-1D Euler equations , 1995 .

[29]  F. James,et al.  Differentiability with Respect to Initial Data for a Scalar Conservation Law , 1999 .

[30]  A. Bressan,et al.  A variational calculus for discontinuous solutions of systems of conservation laws , 1995 .

[31]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[32]  Alberto Bressan,et al.  Shift Differentials of Maps in BV Spaces , 2006 .

[33]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[34]  Michael B. Giles,et al.  Discrete Adjoint Approximations with Shocks , 2003 .

[35]  F. Golse,et al.  The nonlinear diffusion limit for generalized Carleman models: the initial-boundary value problem , 2007, math/0702705.

[36]  Stefan Ulbrich,et al.  Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws , 2003, Syst. Control. Lett..

[37]  William W. Hager,et al.  The Euler approximation in state constrained optimal control , 2001, Math. Comput..

[38]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[39]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[40]  B. François,et al.  Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness , 1999 .

[41]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[42]  Laurent Gosse,et al.  An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , 2002 .

[43]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[44]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[45]  Lorenzo Pareschi,et al.  Numerical Schemes for Hyperbolic Systems of Conservation Laws with Stiff Diffusive Relaxation , 2000, SIAM J. Numer. Anal..

[46]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[47]  Giacomo Dimarco,et al.  Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations , 2012, SIAM J. Numer. Anal..