Acoustic infinite elements for non-separable geometries

We present new infinite element formulations for solving acoustic scattering and radiation problems in the exterior of long, slender bodies. The new infinite elements are geometrically constructed from a prolate spheroid inscribed by the scatterer. These elements need not begin on a level surface of the prolate spheroidal coordinate system. Instead, they may be attached to any convex surface, including that of the scatterer itself. This scheme reduces, or even completely eliminates, finite element modeling of the exterior medium. The formulations may easily be extended to the cases of an interior oblate spheroid or ellipsoid. We present both conjugated and unconjugated formulations without any weighting factors, although it would be simple to include them. We describe a fast numerical scheme for computing the element integrals based on Chebychev approximation. We include numerical results for scattering from spheres and capped cylinders. These results demonstrate the accuracy and the dramatic reduction in computational expense of our new formulations compared to other coupled finite element/infinite element methods.

[1]  R. J. Astley,et al.  Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering. Part I. Formulation in the frequency domain , 1998 .

[2]  K. R. Fyfe,et al.  ON THE USE OF VARIABLE ORDER INFINITE WAVE ENVELOPE ELEMENTS FOR ACOUSTIC RADIATION AND SCATTERING , 1995 .

[3]  David S. Burnett,et al.  An ellipsoidal acoustic infinite element , 1998 .

[4]  K. Gerdes The conjugated vs. the unconjugated infinite element method for the Helmholtz equation in exterior domains , 1998 .

[5]  R. J. Astley,et al.  Wave envelope and infinite elements for acoustical radiation , 1983 .

[6]  David S. Burnett,et al.  A three‐dimensional acoustic infinite element based on a prolate spheroidal multipole expansion , 1994 .

[7]  Peter Bettess,et al.  INFINITE ELEMENTS FOR DYNAMIC PROBLEMS: PART 1 , 1991 .

[8]  R. J. Astley,et al.  Mapped spheroidal wave-envelope elements for unbounded wave problems , 1998 .

[9]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[11]  M. Yacamán,et al.  Topographical interpretation of vacuum-deposited fine metallic particles , 1979 .

[12]  D. Givoli Non-reflecting boundary conditions , 1991 .

[13]  K. Fyfe,et al.  A Variable Order Infinite Acoustic Wave Envelope Element , 1994 .

[14]  Calvin H. Wilcox,et al.  A generalization of theorems of Rellich and Atkinson , 1956 .

[15]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[16]  R. Astley FE mode-matching schemes for the exterior Helmholtz problem and their relationship to the FE-DtN approach , 1996 .

[17]  K. Gerdes,et al.  A REVIEW OF INFINITE ELEMENT METHODS FOR EXTERIOR HELMHOLTZ PROBLEMS , 2000 .

[18]  T. Hughes,et al.  A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics , 1992 .

[19]  Frank Ihlenburg,et al.  ON FUNDAMENTAL ASPECTS OF EXTERIOR APPROXIMATIONS WITH INFINITE ELEMENTS , 2000 .

[20]  Peter Bettess,et al.  More on infinite elements , 1980 .

[21]  R. J. Astley,et al.  A Note on the Utility of a Wave Envelope Approach in Finite Element Duct Transmission Studies , 1981 .

[22]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[23]  Peter Bettess Operation counts for boundary integral and finite element methods , 1981 .

[24]  F. V. A. M. D.Phil.,et al.  LXI. On Sommerfeld's “radiation condition.” , 1949 .

[25]  David T. Wilton,et al.  Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem , 1992 .

[26]  F. V. Atkinson On Sommerfeld's "Radiation Condition" , 1949 .

[27]  R. J. Astley,et al.  NUMERICAL STUDIES OF CONJUGATED INFINITE ELEMENTS FOR ACOUSTICAL RADIATION , 2000 .

[28]  R. J. Astley,et al.  Finite element formulations for acoustical radiation , 1983 .

[29]  David S. Burnett,et al.  Prolate and oblate spheroidal acoustic infinite elements , 1998 .

[30]  P. Bettess,et al.  INFINITE ELEMENTS FOR DYNAMIC PROBLEMS: PART 2 , 1991 .

[31]  Rabia Djellouli,et al.  FINITE ELEMENT SOLUTION OF TWO-DIMENSIONAL ACOUSTIC SCATTERING PROBLEMS USING ARBITRARILY SHAPED CONVEX ARTIFICIAL BOUNDARIES , 2000 .

[32]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[33]  R. J. Astley A finite element, wave envelope formulation for acoustical radiation in moving flows , 1985 .

[34]  O. C. Zienkiewicz,et al.  Diffraction and refraction of surface waves using finite and infinite elements , 1977 .

[35]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[36]  Ivo Babuška,et al.  A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems , 1998 .

[37]  K. Gerdes,et al.  A review of infinite element methods , 1999 .

[38]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[39]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[40]  R. J. Astley,et al.  Wave envelope and infinite element schemes for fan noise radiation from turbofan inlets , 1983 .

[41]  B. Regan,et al.  Application of the Finite Element Method to Acoustic Scattering Problems , 1996 .

[42]  R. J. Astley,et al.  Mapped Wave Envelope Elements for Acoustical Radiation and Scattering , 1994 .

[43]  Leszek F. Demkowicz,et al.  Analysis of a coupled finite-infinite element method for exterior Helmholtz problems , 2001, Numerische Mathematik.