Tissue specificity of cardiac troponin I, cardiac troponin T and creatine kinase-MB.

[1]  F. Apple,et al.  Cardiac troponin T isoforms expressed in renal diseased skeletal muscle will not cause false-positive results by the second generation cardiac troponin T assay by Boehringer Mannheim. , 1998, Clinical chemistry.

[2]  F. Apple,et al.  Cardiac troponin I and T alterations in dog hearts with myocardial infarction: correlation with infarct size. , 1998, American journal of clinical pathology.

[3]  J. Kaski,et al.  Myocardial damage : early detection by novel biochemical markers , 1998 .

[4]  F. Apple,et al.  Post-infarction left ventricular remodeling induces changes in creatine kinase mRNA and protein subunit levels in porcine myocardium. , 1997, The American journal of pathology.

[5]  F. Apple,et al.  Cardiac troponin I and T alterations in hearts with severe left ventricular remodeling. , 1997, Clinical chemistry.

[6]  F. Apple,et al.  Cardiac troponin T composition in normal and regenerating human skeletal muscle. , 1997, Clinical chemistry.

[7]  F. Apple,et al.  Cardiac troponin-I is not expressed in fetal and healthy or diseased adult human skeletal muscle tissue. , 1995, Clinical chemistry.

[8]  M. Yacoub,et al.  Molecular cloning of human cardiac troponin T isoforms: expression in developing and failing heart. , 1995, Journal of molecular and cellular cardiology.

[9]  F. Apple,et al.  Human and canine cardiac troponin T and creatine kinase-MB distribution in normal and diseased myocardium. Infarct sizing using serum profiles. , 1995, Archives of pathology & laboratory medicine.

[10]  F. Apple,et al.  Expression of creative kinase M and B mRNAs in treadmill trained rat skeletal muscle , 1994 .

[11]  Jack H. Ladenson,et al.  Cardiac Troponin I A Marker With High Specificity for Cardiac Injury , 1993, Circulation.

[12]  M. Wyss,et al.  Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. , 1992, The Biochemical journal.

[13]  F. Apple,et al.  Canine Myocardial Creatine Kinase Isoenzymes After Chronic Coronary Artery Occlusion , 1991, Circulation.

[14]  F. Apple,et al.  Canine myocardial creatine kinase isoenzyme response to coronary artery occlusion. , 1989, The American journal of physiology.

[15]  B. Popovich,et al.  Comparison of creatine kinase M and B subunit, mRNAs and isoenzyme activity in ischemicdog myocardium , 1987 .

[16]  R. Shemin,et al.  The creatine kinase system in normal and diseased human myocardium. , 1985, The New England journal of medicine.

[17]  F. Apple,et al.  Creatine kinase-MB isoenzyme adaptations in stressed human skeletal muscle of marathon runners , 1985 .

[18]  R. Kerr Chaotic rotation predicted for hyperion. , 1983, Science.

[19]  P J Geiger,et al.  Transport of energy in muscle: the phosphorylcreatine shuttle. , 1981, Science.

[20]  H. Lang Creatine Kinase Isoenzymes , 1981, Springer Berlin Heidelberg.

[21]  I. Goto,et al.  Creatine Phosphokinase: Human Fetus and Patients , 1969 .