Quantitative parameter tuning scheme for a class of multiloop control systems

A quantitative parameter tuning scheme for a class of multiloop control systems is designed by Internal Model Control (IMC) method. IMC method is a common-used design method for multivariable control systems. This design method provides a single controller parameter for each control loop. The existing trial and error method for tuning these parameters are conservative and time-consuming. An analytical tuning scheme is proposed to tune these parameters quantitatively. Differing from the trial and error method, the interaction information is considered quantitatively in the tuning procedure. The proposed tuning scheme consists of calculation method of the tuning bound, parameter estimation method and dominant pole adjustment method. The quantitative relationships between the variation of the dominant pole and the time–domain design specifications are also studied. Numerical examples are given to demonstrate the validity of the proposed tuning scheme.

[1]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[2]  Babatunde A. Ogunnaike,et al.  Advanced multivariable control of a pilot‐plant distillation column , 1983 .

[3]  R. K. Wood,et al.  Terminal composition control of a binary distillation column , 1973 .

[4]  Jietae Lee,et al.  One-Parameter Method for a Multiloop Control System Design , 1999 .

[5]  Karolos M. Grigoriadis,et al.  Actuator saturation control , 2002 .

[6]  Jietae Lee,et al.  Two-Step IMC−PID Method for Multiloop Control System Design , 2002 .

[7]  Tao Liu,et al.  Analytical Multiloop PI/PID Controller Design for Two-by-Two Processes with Time Delays , 2005 .

[8]  Masami Ito,et al.  A process-model control for linear systems with delay , 1981 .

[9]  William L. Luyben,et al.  Simple method for tuning SISO controllers in multivariable systems , 1986 .

[10]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[11]  Helene Panagopoulos,et al.  PID Controller Design , 1998 .

[12]  Jiawen Dong,et al.  Design of robust multivariable PID controllers via IMC , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[13]  Jose Alvarez-Ramirez,et al.  Optimality of internal model control tuning rules , 2004 .

[14]  Thomas F. Edgar,et al.  Continuation method for the modified ziegler-nichols tuning of multiloop control systems , 2005 .

[15]  Yi-Cheng Huang,et al.  Internal model control approach for designing piezoelectric actuator controller with nonminimum phase , 2003, Proceedings of the 2003 IEEE International Symposium on Intelligent Control.

[16]  Moonyong Lee,et al.  Analytical Design of Multiloop PID Controllers for Desired Closed-Loop Responses (R&D Note) , 2004 .

[17]  Min-Sen Chiu,et al.  Decoupling internal model control for multivariable systems with multiple time delays , 2002 .

[18]  Sunwon Park,et al.  PID controller tuning for desired closed‐loop responses for SI/SO systems , 1998 .

[19]  D. Seborg,et al.  Multiloop PI/PID controller design based on Gershgorin bands , 2001 .

[20]  I-Lung Chien,et al.  Simplified IMC-PID tuning rules , 1994 .

[21]  Wenjian Cai,et al.  Simple Decentralized PID Controller Design Method Based on Dynamic Relative Interaction Analysis , 2005 .

[22]  Daniel Hodouin,et al.  Frequency based tuning of SISO controllers for two-by-two processes , 1996 .

[23]  Manfred Morari,et al.  Interaction measures for systems under decentralized control , 1986, Autom..

[24]  Linlin Ou,et al.  Algebraic Solution to H~2 Control Problems. II. The Multivariable Decoupling Case , 2006 .

[25]  J. Bilbao,et al.  Solid trajectories and cycle times in spouted beds , 2004 .

[26]  Thomas F. Edgar,et al.  Multiloop PI/PID control system improvement via adjusting the dominant pole or the peak amplitude ratio , 2006 .