Tactile Bristle Sensors Made With Slime Mold

Slime mold Physarum polycephalum is a large single cell visible by unaided eye. We design an experimental laboratory implementation of a slime mold based tactile bristles, where the slime mold responds to repeated deflection of bristle by an immediate high-amplitude spike and a prolonged increase in amplitude and width of its oscillation impulses. We demonstrate that signal strength of the Physarum tactile bristle sensor averages near six for an immediate response and two for a prolonged response.

[1]  W Seifriz A theory of protoplasmic streaming , 1937, Protoplasma.

[2]  L. V. Heilbrunn,et al.  The Electric Charge of Protoplasmic Colloids , 1939, Physiological Zoology.

[3]  T. Iwamura,et al.  Correlations between protoplasmic streaming and bioelectric potential of a slime mold, Physarum polycephalum , 1949 .

[4]  N. Kamiya,et al.  Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow , 1950 .

[5]  U. Kishimoto,et al.  RHYTHMICITY IN THE PROTOPLASMIC STREAMING OF A SLIME MOLD, PHYSARUM POLYCEPHALUM , 1958, The Journal of general physiology.

[6]  R. Meyer,et al.  Studies on microplasmodia of Physarum polycephalum V: electrical activity of different types of microplasmodia and macroplasmodia. , 1979, Cell biology international reports.

[7]  M H Weisenseel,et al.  Ionic currents traverse the slime mould physarum. , 1981, Cell biology international reports.

[8]  T. Nakagaki,et al.  Intelligence: Maze-solving by an amoeboid organism , 2000, Nature.

[9]  O. Hamill,et al.  Molecular basis of mechanotransduction in living cells. , 2001, Physiological reviews.

[10]  Masashi Aono,et al.  Robust and emergent Physarum logical-computing. , 2004, Bio Systems.

[11]  J. Vacanti,et al.  Endothelialized Networks with a Vascular Geometry in Microfabricated Poly(dimethyl siloxane) , 2004 .

[12]  U. Achenbach,et al.  Synchronization and signal transmission in protoplasmic strands of Physarum , 1981, Planta.

[13]  Friedrich G Barth,et al.  Spider mechanoreceptors , 2004, Current Opinion in Neurobiology.

[14]  D. Gradmann,et al.  Electrical properties of the plasma membrane of microplasmodia ofPhysarum polycephalum , 2005, The Journal of Membrane Biology.

[15]  J. Engel,et al.  Multi-Walled Carbon Nanotube Filled Conductive Elastomers: Materials and Application to Micro Transducers , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[16]  J. Chen,et al.  Polyurethane rubber all-polymer artificial hair cell sensor , 2006, Journal of Microelectromechanical Systems.

[17]  Yo Kato,et al.  Tactile Sensor Without Wire and Sensing Element in the Tactile Region Using New Rubber Material , 2008 .

[18]  Mark R. Cutkosky,et al.  Force and Tactile Sensors , 2008, Springer Handbook of Robotics.

[19]  Yasuo Kuga,et al.  Bio-inspired tactile sensor with arrayed structures based on electroactive polymers , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[20]  Yo Kato,et al.  Fast and Accurate Tactile Sensor System for a Human-Interactive Robot , 2008 .

[21]  Jose Gerardo Rocha and Senentxu Lanceros-Mendez Sensors: Focus on Tactile Force and Stress Sensors , 2008 .

[22]  Veronica J. Santos,et al.  Biomimetic Tactile Sensor Array , 2008, Adv. Robotics.

[23]  Tomohiro Shirakawa,et al.  On Simultaneous Construction of Voronoi Diagram and Delaunay Triangulation by Physarum polycephalum , 2009, Int. J. Bifurc. Chaos.

[24]  Andrew Adamatzky,et al.  Developing Proximity Graphs by Physarum polycephalum: Does the Plasmodium Follow the Toussaint Hierarchy? , 2009, Parallel Process. Lett..

[25]  M. Taya,et al.  Bio-inspired design of tactile sensors based on ionic polymer metal composites , 2009 .

[26]  Leandro Lorenzelli,et al.  Bio-inspired tactile sensing arrays , 2009, Microtechnologies.

[27]  B L Davies,et al.  Applying tactile sensing with piezoelectric materials for minimally invasive surgery and magnetic-resonance-guided interventions , 2009, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[28]  Andrew Adamatzky,et al.  Physarum Machines: Computers from Slime Mould , 2010 .

[29]  John S. McCaskill,et al.  Living Technology: Exploiting Life's Principles in Technology , 2010, Artificial Life.

[30]  Rebecca K. Kramer,et al.  Hyperelastic pressure sensing with a liquid-embedded elastomer , 2010 .

[31]  A. Taniguchi Live cell-based sensor cells. , 2010, Biomaterials.

[32]  Robert J. Wood,et al.  Soft artificial skin with multi-modal sensing capability using embedded liquid conductors , 2011, 2011 IEEE SENSORS Proceedings.

[33]  Andrew Schumann,et al.  PHYSARUM SPATIAL LOGIC , 2011 .

[34]  Andrew Adamatzky Advances in Physarum Machines Gates, Hulls, Mazes and Routing with Slime Mould , 2011, PARCO.

[35]  Lucia Beccai,et al.  Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger , 2011 .

[36]  Ruben D. Ponce Wong,et al.  Sensors and Actuators A: Physical , 2022 .

[37]  Masato Ohmukai,et al.  Electrode for Force Sensor of Conductive Rubber , 2012 .

[38]  Lucia Beccai,et al.  Bio-hybrid tactile sensor and experimental set-up for investigating and mimicking the human sense of touch , 2012 .

[39]  Nigel H. Lovell,et al.  A review of tactile sensing technologies with applications in biomedical engineering , 2012 .

[40]  Nicola Vitiello,et al.  Synthetic and Bio-Artificial Tactile Sensing: A Review , 2013, Sensors.

[41]  Andrew Adamatzky,et al.  Slime mould tactile sensor , 2013, ArXiv.

[42]  A. Adamatzky Slimeware: Engineering Devices with Slime Mold , 2013, Artificial Life.