OPTICAL ABSORPTION SPECTRA OF AU7, AU9, AU11, AND AU13, AND THEIR CATIONS : GOLD CLUSTERS WITH 6, 7, 8, 9, 10, 11, 12, AND 13 S-ELECTRONS

The optical absorption spectra of a series of small gold clusters and their cations have been measured, between 1.9 and 5.6 eV, using a method based upon the photodepletion of a molecular beam of their van der Waals complexes containing one and two xenon atoms. This method provides size‐specific information even though the molecular beam contains a wide range of cluster sizes. There is little difference between the spectra of complexes containing one or two xenon atoms. However there is a pronounced odd–even alternation in the spectra of gold clusters with differing numbers of valence s electrons. This alternation is described in terms of a simple electron pairing scheme. The spectrum for Au13 is in reasonable agreement with Dirac scattered‐wave molecular orbital considerations for icosahedral Au13 [A. F. Ramos, R. Arratia‐Perez, and G. L. Malli, Phys. Rev. B 35, 3790 (1987)]. This description of the molecular and electronic structure of small gold clusters in terms of localized molecular orbitals is cont...

[1]  Jiří Pittner,et al.  Effective core potential‐configuration interaction study of electronic structure and geometry of small anionic Agn clusters: Predictions and interpretation of photodetachment spectra , 1994 .

[2]  Andreas Amrein,et al.  On the vibrational temperature of metal cluster beams: A time‐resolved thermionic emission study , 1993 .

[3]  B. Collings,et al.  Absorption spectra of small niobium and gold clusters measured by photodepletion of their rare gas van der Waals complexes: some preliminary experiments , 1993 .

[4]  M. Knickelbein,et al.  Photodissociation spectroscopy of NbnArm complexes , 1993 .

[5]  Kolář,et al.  Transition to plasmonlike absorption in small Hg clusters. , 1992, Physical review letters.

[6]  W. Schulze,et al.  Electronic Structures and Related Properties. Electron Impact Ionization Potentials of Gold and Silver Clusters Men, n ≤ 22 , 1992 .

[7]  J. Buttet,et al.  The optical absorption spectra of small silver clusters (n=5–11) embedded in argon matrices , 1992 .

[8]  J. Polanyi,et al.  Photoinduced charge‐transfer dissociation in van der Waals complexes: Na2⋅⋅⋅(ClCH3)n , 1992 .

[9]  M. Knickelbein Electronic shell structure in the ionization potentials of copper clusters , 1992 .

[10]  K. Meiwes-Broer,et al.  Giant resonances in silver-cluster photofragmentation , 1992 .

[11]  K. J. Taylor,et al.  Ultraviolet photoelectron spectra of coinage metal clusters , 1992 .

[12]  M. Cheeseman,et al.  Ionization potentials and reactivity of coinage metal clusters , 1992 .

[13]  Optical excitation in small ionized sodium clusters: closed-shell and open-shell systems , 1992 .

[14]  M. Knickelbein,et al.  Metal cluster—rare gas van der Waals complexes: NbnArm and FenKrm , 1991 .

[15]  Andreas Amrein,et al.  Multiphoton excitation, ionization, and dissociation decay dynamics of small clusters of niobium, tantalum, and tungsten: Time‐resolved thermionic emission , 1991 .

[16]  Stephen J. Riley,et al.  Copper clusters: The interplay between electronic and geometrical structure , 1991 .

[17]  M. Kappes,et al.  On the optical response of Na20 and its relation to computational prediction , 1991 .

[18]  Gianfranco Vidali,et al.  Potentials of physical adsorption , 1991 .

[19]  C. R. Chris Wang,et al.  Optical absorption spectroscopy of sodium clusters as measured by collinear molecular beam photodepletion , 1990 .

[20]  J. Polanyi,et al.  Photochemistry of adsorbed molecules. VII. Ultraviolet photoejection and photodesorption of OCS on LiF(001) , 1990 .

[21]  E. K. Parks,et al.  Chemical probes of metal cluster ionization potentials , 1990 .

[22]  G. Xu,et al.  Photoinduced charge-transfer dissociation of hydrogen chloride on silver(111) , 1989 .

[23]  C. Bauschlicher On the electron affinity of Au3 , 1989 .

[24]  Ramos,et al.  Calculated electronic structure of Au13 clusters. , 1989, Physical review. B, Condensed matter.

[25]  J. Polanyi,et al.  Bimolecular photoreaction of adsorbates: 2 HX→H2+X2 (X=Cl, Br) , 1989 .

[26]  C. Bréchignac,et al.  Collective excitation in closed-shell potassium cluster ions , 1989 .

[27]  R. J. Williams,et al.  Dynamics of surface‐aligned photochemistry (theory). I. Trajectory study of H↘+BrH’(ad) , 1988 .

[28]  Ramos,et al.  Dirac scattered-wave calculations on an icosahedral Au13 cluster. , 1987, Physical review. B, Condensed matter.

[29]  W. Heer,et al.  Shell structure and response properties of metal clusters , 1986 .

[30]  T. Sakurai,et al.  Mass distributions of copper, silver and gold clusters and electronic shell structure , 1985 .

[31]  J. Polanyi,et al.  UV photodissociation and photodesorption of adsorbed molecules. 1. Methyl bromide on lithium fluoride(001) , 1984 .

[32]  William E. Cooke,et al.  High Resolution Spectroscopy , 1982 .

[33]  T. Rhodin,et al.  Clusters and surfaces , 1979 .

[34]  M. Weissbluth Atoms and Molecules , 1978 .

[35]  A. E. Kingston,et al.  The refractive indices and Verdet constants of the inert gases , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .