Semi-Lagrangian schemes for linear and fully non-linear diffusion equations

For linear and fully non-linear diffusion equations of Bellman-Isaacs type, we introduce a class of approximation schemes based on differencing and interpolation. As opposed to classical numerical methods, these schemes work for general diffusions with coefficient matrices that may be non-diagonal dominant and arbitrarily degenerate. In general such schemes have to have a wide stencil. Besides providing a unifying framework for several known first order accurate schemes, our class of schemes includes new first and higher order versions. The methods are easy to implement and more efficient than some other known schemes. We prove consistency and stability of the methods, and for the monotone first order methods, we prove convergence in the general case and robust error estimates in the convex case. The methods are extensively tested.

[1]  Peter A. Forsyth,et al.  Numerical convergence properties of option pricing PDEs with uncertain volatility , 2003 .

[2]  I. Dolcetta On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming , 1983 .

[3]  Fabio Camilli,et al.  A Finite Element Like Scheme for Integro-Partial Differential Hamilton-Jacobi-Bellman Equations , 2009, SIAM J. Numer. Anal..

[4]  R. Munos,et al.  Consistency of a simple multidimensional scheme for Hamilton–Jacobi–Bellman equations , 2005 .

[5]  P. Souganidis,et al.  Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations , 1995 .

[6]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[7]  J. Frédéric Bonnans,et al.  A fast algorithm for the two dimensional HJB equation of stochastic control , 2004 .

[8]  Adam M. Oberman Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian , 2008 .

[9]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[10]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[11]  Philip J. Rasch,et al.  On Shape-Preserving Interpolation and Semi-Lagrangian Transport , 1990, SIAM J. Sci. Comput..

[12]  P. Lions,et al.  Convergent difference schemes for nonlinear parabolic equations and mean curvature motion , 1996 .

[13]  Hongjie Dong,et al.  On the rate of convergence of finite-difference approximations for Bellman equations with constant coefficients , 2006 .

[14]  Roberto Ferretti,et al.  Convergence of Semi-Lagrangian Approximations to Convex Hamilton-Jacobi Equations under (Very) Large Courant Numbers , 2002, SIAM J. Numer. Anal..

[15]  N. Krylov On the rate of convergence of finite-difference approximations for Bellmans equations with variable coefficients , 2000 .

[16]  Hamilton-Jacobi Equations,et al.  ON THE CONVERGENCE RATE OF APPROXIMATION SCHEMES FOR , 2022 .

[17]  Guy Barles,et al.  Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations , 2007, Math. Comput..

[18]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[19]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  Jose-Luis Mendali Some estimates for finite difference approximations , 1989 .

[21]  J. Frédéric Bonnans,et al.  Consistency of Generalized Finite Difference Schemes for the Stochastic HJB Equation , 2003, SIAM J. Numer. Anal..

[22]  J. Quadrat Numerical methods for stochastic control problems in continuous time , 1994 .

[23]  Maurizio Falcone,et al.  An approximation scheme for the optimal control of diffusion processes , 1995 .

[24]  Guy Barles,et al.  On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations , 2002 .

[25]  Adam M. Oberman,et al.  Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..

[26]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947 .

[27]  W. Wasow,et al.  On the Approximation of Linear Elliptic Differential Equations by Difference Equations with Positive Coefficients , 1952 .

[28]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[29]  Kenneth R. Jackson,et al.  The Order of Monotone Piecewise Cubic Interpolation. , 1985 .

[30]  Hasnaa Zidani,et al.  Numerical Approximation for a Superreplication Problem under Gamma Constraints , 2009, SIAM J. Numer. Anal..

[31]  Marizio Falcone,et al.  Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations , 1994 .

[32]  M. Falcone A numerical approach to the infinite horizon problem of deterministic control theory , 1987 .

[33]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1991 .