Design and Experimentation of a 1 MW Horizontal Axis Wind Turbine

In this work was carried out the aerodynamics design of a 1 MW horizontal axis wind turbine by using blade element momentum theory (BEM). The generated design was scaled and built for testing purposes in the discharge of an axial flow fan of 80 cm in diameter. Strip theory was used for the aerodynamic performance evaluation. In the numerical calculations was conducted a comparative analysis of the performance curves adding increasingly correction factors to the original equation of ideal flow to reduce the error regarding real operating values got by the experimental tests. Correction factors introduced in the ideal flow equation were the tip loss factor and drag coefficient. BEM results showed good approximation using experimental data for the tip speed ratio less than design. The best approximation of the power coefficient calculation was for tip speed ratio less than 6. BEM method is a tool for practical calculation and can be used for the design and evaluation of wind turbines when the flow rate is not too turbulent and radial velocity components are negligible.