Distribution of polarization-entangled photonpairs produced via spontaneous parametric down-conversion within a local-area fiber network: theoretical model and experiment.

We present a theoretical model for the distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network. This model allows an entanglement distributor who plays the role of a service provider to determine the photon-pair generation rate giving highest two-photon interference fringe visibility for any pair of users, when given user-specific parameters. Usefulness of this model is illustrated in an example and confirmed in an experiment, where polarization-entangled photon-pairs are distributed over 82 km and 132 km of dispersion-managed optical fiber. Experimentally observed visibilities and entanglement fidelities are in good agreement with theoretically predicted values.

[1]  Marius A Albota,et al.  Efficient single-photon counting at 1.55 microm by means of frequency upconversion. , 2004, Optics letters.

[2]  Sae Woo Nam,et al.  Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors. , 2008, Optics express.

[3]  H. Takesue,et al.  Efficient and low-noise single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides. , 2008, Optics letters.

[4]  J. Rarity,et al.  Photon statistics of pulsed parametric light , 1998 .

[5]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[6]  D. Ritchie,et al.  Improved fidelity of triggered entangled photons from single quantum dots , 2006, quant-ph/0601187.

[7]  Onur Kuzucu,et al.  Pulsed Sagnac source of narrow-band polarization-entangled photons , 2007, 0710.5390.

[8]  M. Fejer,et al.  Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. , 2005, Optics letters.

[9]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[10]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[11]  Akio Yoshizawa,et al.  A 1550 nm Single-Photon Detector Using a Thermoelectrically Cooled InGaAs Avalanche Photodiode , 2001 .

[12]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[13]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[14]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical Review Letters.

[15]  K. Chan,et al.  Quantum cryptography with entangled multiphotons of the same polarization , 2004 .

[16]  J. P. von der Weid,et al.  Full polarization control for fiber optical quantum communication systems using polarization encoding. , 2008, Optics express.

[17]  Vlatko Vedral,et al.  Entanglement in Quantum Information Theory , 1998, quant-ph/9804075.

[18]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[19]  Polarisation-entangled photon-pair source at 1550nm using 1 mm-long PPLN waveguide in fibre-loop configuration , 2007 .

[20]  O. Okunev,et al.  Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range , 2002 .

[21]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[22]  Akio Yoshizawa,et al.  Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides , 2003 .

[23]  H. Lo,et al.  Quantum key distribution with entangled photon sources , 2007, quant-ph/0703122.

[24]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[25]  Nicolas Gisin,et al.  Quantum key distribution between N partners: Optimal eavesdropping and Bell's inequalities , 2001 .

[26]  T Honjo,et al.  Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors. , 2007, Optics express.

[27]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[28]  John G. Rarity,et al.  Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs , 2001 .

[29]  N. Gisin,et al.  Four-photon correction in two-photon Bell experiments , 2004, quant-ph/0407189.

[30]  Jie Chen,et al.  Active polarization stabilization in optical fibers suitable for quantum key distribution. , 2007, Optics express.

[31]  M. Plenio,et al.  Teleportation, entanglement and thermodynamics in the quantum world , 1998 .

[32]  Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide. , 2008, Optics express.

[33]  Thomas Lorünser,et al.  High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. , 2007, Optics express.

[34]  Kyo Inoue,et al.  Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors , 2005 .