Properties and Iterative Methods for the -Lasso

We introduce the -lasso which generalizes the well-known lasso of Tibshirani (1996) with a closed convex subset of a Euclidean m-space for some integer . This set can be interpreted as the set of errors within given tolerance level when linear measurements are taken to recover a signal/image via the lasso. Solutions of the -lasso depend on a tuning parameter . In this paper, we obtain basic properties of the solutions as a function of . Because of ill posedness, we also apply regularization to the -lasso. In addition, we discuss iterative methods for solving the -lasso which include the proximal-gradient algorithm and the projection-gradient algorithm.

[1]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[2]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[3]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[4]  Yair Censor,et al.  A multiprojection algorithm using Bregman projections in a product space , 1994, Numerical Algorithms.

[5]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[6]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[7]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[8]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[9]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[10]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[11]  Jun Zhang,et al.  On Recovery of Sparse Signals via ℓ1 Minimization , 2008, ArXiv.

[12]  Hong-Kun Xu Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces , 2010 .

[13]  C. Micchelli,et al.  Proximity algorithms for image models: denoising , 2011 .

[14]  Hong-Kun Xu Properties and iterative methods for the lasso and its variants , 2014 .