Properties and Iterative Methods for the -Lasso
暂无分享,去创建一个
[1] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[2] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[3] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[4] Yair Censor,et al. A multiprojection algorithm using Bregman projections in a product space , 1994, Numerical Algorithms.
[5] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[6] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[7] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[8] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[9] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[10] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[11] Jun Zhang,et al. On Recovery of Sparse Signals via ℓ1 Minimization , 2008, ArXiv.
[12] Hong-Kun Xu. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces , 2010 .
[13] C. Micchelli,et al. Proximity algorithms for image models: denoising , 2011 .
[14] Hong-Kun Xu. Properties and iterative methods for the lasso and its variants , 2014 .