Cortical circuits for integration of self-motion and visual-motion signals

The cerebral cortex contains cells which respond to movement of the head, and these cells are thought to be involved in the perception of self-motion. In particular, studies in the primary visual cortex of mice show that both running speed and passive whole-body rotation modulates neuronal activity, and modern genetically targeted viral tracing approaches have begun to identify previously unknown circuits that underlie these responses. Here we review recent experimental findings and provide a road map for future work in mice to elucidate the functional architecture and emergent properties of a cortical network potentially involved in the generation of egocentric-based visual representations for navigation.

[1]  M. Stryker,et al.  Identification of a Brainstem Circuit Regulating Visual Cortical State in Parallel with Locomotion , 2014, Neuron.

[2]  M. Carandini,et al.  Integration of visual motion and locomotion in mouse visual cortex , 2013, Nature Neuroscience.

[3]  J. Michael Wyass,et al.  Connections between the retrosplenial cortex and the hippocampal formation in the rat: A review , 1992, Hippocampus.

[4]  Gunter P Siegmund,et al.  Adaptations to normal human gait on potentially slippery surfaces: the effects of awareness and prior slip experience. , 2006, Gait & posture.

[5]  Wei-Cheng Chang,et al.  Organization of long-range inputs and outputs of frontal cortex for top-down control , 2016, Nature Neuroscience.

[6]  E. Maguire,et al.  What does the retrosplenial cortex do? , 2009, Nature Reviews Neuroscience.

[7]  C. Harvey,et al.  The Spatial Structure of Neural Encoding in Mouse Posterior Cortex during Navigation , 2019, Neuron.

[8]  Attila Losonczy,et al.  Rabies Virus CVS-N2cΔG Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability , 2016, Neuron.

[9]  A. Ghazanfar,et al.  Is neocortex essentially multisensory? , 2006, Trends in Cognitive Sciences.

[10]  Lucile Dupin,et al.  Motion perception by a moving observer in a three-dimensional environment. , 2013, Journal of vision.

[11]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[12]  Javier Moya,et al.  Widespread Vestibular Activation of the Rodent Cortex , 2015, The Journal of Neuroscience.

[13]  Richard R Neptune,et al.  Differences in muscle function during walking and running at the same speed. , 2006, Journal of biomechanics.

[14]  B. Stein,et al.  Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. , 1986, Journal of neurophysiology.

[15]  Dora E Angelaki,et al.  Processing of object motion and self-motion in the lateral subdivision of the medial superior temporal area in macaques. , 2019, Journal of neurophysiology.

[16]  Marina Fridman,et al.  A Role for Mouse Primary Visual Cortex in Motion Perception , 2018, Current Biology.

[17]  Lisa M. Giocomo,et al.  Self-motion processing in visual and entorhinal cortices: inputs, integration, and implications for position coding. , 2018, Journal of neurophysiology.

[18]  Dora E Angelaki,et al.  Multisensory Integration of Visual and Vestibular Signals Improves Heading Discrimination in the Presence of a Moving Object , 2015, The Journal of Neuroscience.

[19]  Georg B. Keller,et al.  Mismatch Receptive Fields in Mouse Visual Cortex , 2016, Neuron.

[20]  Hassana K. Oyibo,et al.  Experience-dependent spatial expectations in mouse visual cortex , 2016, Nature Neuroscience.

[21]  Heping Cheng,et al.  Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice , 2017, Nature Methods.

[22]  G. Vanni-Mercier,et al.  Single neuron activity related to natural vestibular stimulation in the cat's visual cortex , 2005, Experimental Brain Research.

[23]  Kathryn Bonnen,et al.  Beyond Trial-Based Paradigms: Continuous Behavior, Ongoing Neural Activity, and Natural Stimuli , 2018, The Journal of Neuroscience.

[24]  I. Whishaw Posterior neocortical (visual cortex) lesions in the rat impair matching-to-place navigation in a swimming pool: a reevaluation of cortical contributions to spatial behavior using a new assessment of spatial versus nonspatial behavior , 2004, Behavioural Brain Research.

[25]  R. Clay Reid,et al.  Chronic Cellular Imaging of Entire Cortical Columns in Awake Mice Using Microprisms , 2013, Neuron.

[26]  Troy W. Margrie,et al.  A Circuit for Integration of Head- and Visual-Motion Signals in Layer 6 of Mouse Primary Visual Cortex , 2018, Neuron.

[27]  Ovidiu F. Jurjuţ,et al.  Effects of Locomotion Extend throughout the Mouse Early Visual System , 2014, Current Biology.

[28]  Takaki Komiyama,et al.  Learning enhances the relative impact of top-down processing in the visual cortex , 2015, Nature Neuroscience.

[29]  K. B. Clancy,et al.  Locomotion-dependent remapping of distributed cortical networks , 2018, Nature Neuroscience.

[30]  Ian R. Wickersham,et al.  The Stimulus Selectivity and Connectivity of Layer Six Principal Cells Reveals Cortical Microcircuits Underlying Visual Processing , 2014, Neuron.

[31]  Yang Li,et al.  An extended retinotopic map of mouse cortex , 2017, eLife.

[32]  G. DeAngelis,et al.  Neural correlates of multisensory cue integration in macaque MSTd , 2008, Nature Neuroscience.

[33]  Caterina Trentin,et al.  Three-Dimensional Representation of Motor Space in the Mouse Superior Colliculus , 2018, Current Biology.

[34]  O.-J. Gr¨sser,et al.  Interaction of Vestibular and Visual Inputs in the Visual System , 1972 .

[35]  Georg B. Keller,et al.  A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions , 2017, Neuron.

[36]  Maurice J Chacron,et al.  Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways , 2018, eLife.

[37]  Daoyun Ji,et al.  Activities of visual cortical and hippocampal neurons co-fluctuate in freely moving rats during spatial behavior , 2015, eLife.

[38]  David S. Greenberg,et al.  Rats maintain an overhead binocular field at the expense of constant fusion , 2013, Nature.

[39]  M. Carandini,et al.  Locomotion Controls Spatial Integration in Mouse Visual Cortex , 2013, Current Biology.

[40]  Sander W. Keemink,et al.  Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex , 2016, eLife.

[41]  Bruce L. McNaughton,et al.  Sparse orthogonal population representation of spatial context in the retrosplenial cortex , 2017, Nature Communications.

[42]  M. Wallace,et al.  A revised view of sensory cortical parcellation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[44]  J. Taube,et al.  Our sense of direction: progress, controversies and challenges , 2017, Nature Neuroscience.

[45]  Yong Gu,et al.  Causal Evidence of Motion Signals in Macaque Middle Temporal Area Weighted-Pooled for Global Heading Perception , 2017, Cerebral cortex.

[46]  Patricia E. Sharp,et al.  Head Direction, Place, and Movement Correlates for Cells in the Rat Retrosplenial Cortex , 2001 .

[47]  Maneesh Sahani,et al.  A Head-Mounted Camera System Integrates Detailed Behavioral Monitoring with Multichannel Electrophysiology in Freely Moving Mice , 2018, Neuron.

[48]  Georg B. Keller,et al.  Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse , 2012, Neuron.

[49]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[50]  S. Hestrin,et al.  Subthreshold Mechanisms Underlying State-Dependent Modulation of Visual Responses , 2013, Neuron.

[51]  Neil Burgess,et al.  Spatial cell firing during virtual navigation of open arenas by head-restrained mice , 2018, bioRxiv.

[52]  M. Chacron,et al.  The statistics of the vestibular input experienced during natural self‐motion differ between rodents and primates , 2017, The Journal of physiology.

[53]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[54]  Martin T. Wiechert,et al.  Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons , 2015, Nature Neuroscience.

[55]  Brett R. Fajen,et al.  Visual and Non-Visual Contributions to the Perception of Object Motion during Self-Motion , 2011, PloS one.

[56]  M. Wilson,et al.  Coordinated memory replay in the visual cortex and hippocampus during sleep , 2007, Nature Neuroscience.

[57]  Quanxin Wang,et al.  Area map of mouse visual cortex , 2007, The Journal of comparative neurology.

[58]  Johannes C. Dahmen,et al.  Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex , 2015, Nature Neuroscience.

[59]  K. Deisseroth,et al.  Prefrontal Parvalbumin Neurons in Control of Attention , 2016, Cell.

[60]  Troy W. Margrie,et al.  Cortical Circuits: Layer 6 Is a Gain Changer , 2012, Current Biology.

[61]  Daniel Aharoni,et al.  Circuit Investigations With Open-Source Miniaturized Microscopes: Past, Present and Future , 2019, Front. Cell. Neurosci..

[62]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[63]  Na Ji,et al.  In vivo measurement of afferent activity with axon-specific calcium imaging , 2018, Nature Neuroscience.

[64]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[65]  A. McIntosh,et al.  Gait dynamics on an inclined walkway. , 2006, Journal of biomechanics.

[66]  Jean Laurens,et al.  The Brain Compass: A Perspective on How Self-Motion Updates the Head Direction Cell Attractor , 2017, Neuron.

[67]  S. Hofer,et al.  Contextual signals in visual cortex , 2018, Current Opinion in Neurobiology.

[68]  M. Shinder,et al.  Sensory convergence in the parieto-insular vestibular cortex. , 2014, Journal of neurophysiology.

[69]  Kenneth D. Harris,et al.  Coherent encoding of subjective spatial position in visual cortex and hippocampus , 2018, Nature.

[70]  K. Cullen Vestibular processing during natural self-motion: implications for perception and action , 2019, Nature Reviews Neuroscience.

[71]  Ryan P. Adams,et al.  Mapping Sub-Second Structure in Mouse Behavior , 2015, Neuron.

[72]  Laura Busse,et al.  The influence of locomotion on sensory processing and its underlying neuronal circuits , 2018 .

[73]  D. C. Essen,et al.  Visual areas of the mammalian cerebral cortex. , 1979 .

[74]  Matthias Bethge,et al.  Using DeepLabCut for 3D markerless pose estimation across species and behaviors , 2018, Nature Protocols.

[75]  K. Ohki,et al.  Wide-field Ca2+ imaging reveals visually evoked activity in the retrosplenial area , 2015, Front. Mol. Neurosci..

[76]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[77]  Alexandre Pouget,et al.  Optimal multisensory decision-making in a reaction-time task , 2014, eLife.

[78]  Kevin M. Cury,et al.  DeepLabCut: markerless pose estimation of user-defined body parts with deep learning , 2018, Nature Neuroscience.