Ubiquitination Regulates PSD-95 Degradation and AMPA Receptor Surface Expression

[1]  村山 肇子,et al.  cAMP dependent protein kinase調節サブユニットとアカパンカビの形態 , 2003 .

[2]  R. Nicoll,et al.  Postsynaptic Density-95 Mimics and Occludes Hippocampal Long-Term Potentiation and Enhances Long-Term Depression , 2003, The Journal of Neuroscience.

[3]  K. Broadie,et al.  The Ubiquitin Proteasome System Acutely Regulates Presynaptic Protein Turnover and Synaptic Efficacy , 2003, Current Biology.

[4]  K. Martin,et al.  The Ubiquitin Proteasome System Functions as an Inhibitory Constraint on Synaptic Strengthening , 2003, Current Biology.

[5]  M. Ehlers Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system , 2003, Nature Neuroscience.

[6]  Jean-Claude Béïque,et al.  PSD‐95 regulates synaptic transmission and plasticity in rat cerebral cortex , 2003, The Journal of physiology.

[7]  M. Sheng,et al.  Eye opening induces a rapid dendritic localization of PSD-95 in central visual neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Dell'Acqua,et al.  Imaging kinase–AKAP79–phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy , 2003, The Journal of cell biology.

[9]  C. Fletcher,et al.  Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease , 2002, Nature Genetics.

[10]  Aaron DiAntonio,et al.  Ubiquitin and the synapse , 2002, Nature Reviews Neuroscience.

[11]  R. Nicoll,et al.  Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  T. Godenschwege,et al.  New Roles for Ubiquitin in the Assembly and Function of Neuronal Circuits , 2002, Neuron.

[13]  J. Kaplan,et al.  Ubiquitin and AP180 Regulate the Abundance of GLR-1 Glutamate Receptors at Postsynaptic Elements in C. elegans , 2002, Neuron.

[14]  J. Hell,et al.  Regulation of GluR1 by the A-Kinase Anchoring Protein 79 (AKAP79) Signaling Complex Shares Properties with Long-Term Depression , 2002, The Journal of Neuroscience.

[15]  Neal Sweeney,et al.  Synaptic Strength Regulated by Palmitate Cycling on PSD-95 , 2002, Cell.

[16]  S. Fleetwood-Walker,et al.  A Role of the Ubiquitin–Proteasome System in Neuropathic Pain , 2002, The Journal of Neuroscience.

[17]  I. Izquierdo,et al.  The ubiquitin–proteasome cascade is required for mammalian long‐term memory formation , 2001, The European journal of neuroscience.

[18]  Hongkui Zeng,et al.  Forebrain-Specific Calcineurin Knockout Selectively Impairs Bidirectional Synaptic Plasticity and Working/Episodic-like Memory , 2001, Cell.

[19]  Mark F. Bear,et al.  Internalization of ionotropic glutamate receptors in response to mGluR activation , 2001, Nature Neuroscience.

[20]  C. Goodman,et al.  Ubiquitination-dependent mechanisms regulate synaptic growth and function , 2001, Nature.

[21]  M. Sheng,et al.  Molecular organization of the postsynaptic specialization , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Roberto Malinow,et al.  Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons , 2001, Cell.

[23]  Wei-Yang Lu,et al.  Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons , 2001, Neuron.

[24]  D. Taillandier,et al.  Regulation of proteolysis , 2001, Current opinion in clinical nutrition and metabolic care.

[25]  Dane M. Chetkovich,et al.  Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms , 2000, Nature.

[26]  Liaoyuan A. Hu,et al.  β1-Adrenergic Receptor Association with PSD-95 , 2000, The Journal of Biological Chemistry.

[27]  M. Sheng,et al.  Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization , 2000, Nature Neuroscience.

[28]  Mark von Zastrow,et al.  Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD , 2000, Nature Neuroscience.

[29]  Hsiao-Wen Chen,et al.  Unusual spectral energy distribution of a galaxy previously reported to be at redshift 6.68 , 2000, Nature.

[30]  R. Nicoll,et al.  PSD-95 involvement in maturation of excitatory synapses. , 2000, Science.

[31]  Miranda Thomas,et al.  Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins , 2000, Oncogene.

[32]  M. Ehlers,et al.  Reinsertion or Degradation of AMPA Receptors Determined by Activity-Dependent Endocytic Sorting , 2000, Neuron.

[33]  C. Pickart,et al.  Ubiquitin in chains. , 2000, Trends in biochemical sciences.

[34]  M. Bear,et al.  Bidirectional, Activity-Dependent Regulation of Glutamate Receptors in the Adult Hippocampus In Vivo , 2000, Neuron.

[35]  L. Banks,et al.  Multi-PDZ Domain Protein MUPP1 Is a Cellular Target for both Adenovirus E4-ORF1 and High-Risk Papillomavirus Type 18 E6 Oncoproteins , 2000, Journal of Virology.

[36]  T. Hunter,et al.  Ubiquitination--More Than Two to Tango , 2000, Science.

[37]  R. Huganir,et al.  Targeting of PKA to Glutamate Receptors through a MAGUK-AKAP Complex , 2000, Neuron.

[38]  M. Bear,et al.  Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity , 2000, Nature.

[39]  Yu Tian Wang,et al.  Regulation of AMPA Receptor–Mediated Synaptic Transmission by Clathrin-Dependent Receptor Internalization , 2000, Neuron.

[40]  J. D. Weber,et al.  The ARF/p53 pathway. , 2000, Current opinion in genetics & development.

[41]  O. Jones,et al.  Internalization of the Kv1.4 Potassium Channel Is Suppressed by Clustering Interactions with PSD-95* , 2000, The Journal of Biological Chemistry.

[42]  R. Huganir,et al.  Control of GluR1 AMPA Receptor Function by cAMP-Dependent Protein Kinase , 2000, The Journal of Neuroscience.

[43]  R. Nicoll,et al.  Dynamin-dependent endocytosis of ionotropic glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Mark von Zastrow,et al.  Role of AMPA Receptor Cycling in Synaptic Transmission and Plasticity , 1999, Neuron.

[45]  L. Banks,et al.  Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation , 1999, Oncogene.

[46]  R. Morris,et al.  Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein , 1998, Nature.

[47]  Mark F Bear,et al.  NMDA Induces Long-Term Synaptic Depression and Dephosphorylation of the GluR1 Subunit of AMPA Receptors in Hippocampus , 1998, Neuron.

[48]  Mark F Bear,et al.  Involvement of a Postsynaptic Protein Kinase A Substrate in the Expression of Homosynaptic Long-Term Depression , 1998, Neuron.

[49]  Gregor Eichele,et al.  Mutation of the Angelman Ubiquitin Ligase in Mice Causes Increased Cytoplasmic p53 and Deficits of Contextual Learning and Long-Term Potentiation , 1998, Neuron.

[50]  Jianhong Luo,et al.  Subunit composition of N-methyl-D-aspartate receptors in the central nervous system that contain the NR2D subunit. , 1998, Molecular pharmacology.

[51]  Hirofumi Tanaka,et al.  Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53 , 1997, FEBS letters.

[52]  James H. Schwartz,et al.  Ubiquitin C-Terminal Hydrolase Is an Immediate-Early Gene Essential for Long-Term Facilitation in Aplysia , 1997, Cell.

[53]  M. Greenberg,et al.  Calcium Influx via the NMDA Receptor Induces Immediate Early Gene Transcription by a MAP Kinase/ERK-Dependent Mechanism , 1996, The Journal of Neuroscience.

[54]  S. Rogers,et al.  PEST sequences and regulation by proteolysis. , 1996, Trends in biochemical sciences.

[55]  Guillermina Lozano,et al.  Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53 , 1995, Nature.

[56]  Robert C. Malenka,et al.  Independent mechanisms for long-term depression of AMPA and NMDA responses , 1995, Neuron.

[57]  Dhanistha Panyasak,et al.  Circuits , 1995, Annals of the New York Academy of Sciences.

[58]  R. Malenka,et al.  Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression , 1994, Nature.

[59]  M. Bear,et al.  Synaptic plasticity: LTP and LTD , 1994, Current Opinion in Neurobiology.

[60]  Christian Rosenmund,et al.  Anchoring of protein kinase A is required for modulation of AMPA/kainate receptors on hippocampal neurons , 1994, Nature.

[61]  A. Levine,et al.  Mapping of the p53 and mdm-2 interaction domains. , 1993, Molecular and cellular biology.

[62]  Stuart L. Schreiber,et al.  Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes , 1991, Cell.

[63]  R. Malenka,et al.  AMPA RECEPTOR TRAFFICKING AND , 2002 .

[64]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[65]  Liaoyuan A. Hu,et al.  INHIBITION OF RECEPTOR INTERNALIZATION AND FACILITATION OF b1-ADRENERGIC RECEPTOR INTERACTION WITH N-METHYL-D-ASPARTATE RECEPTORS* , 2000 .

[66]  Richard L. Huganir,et al.  Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons , 1999, Nature Neuroscience.