Faster Algorithms for Feedback Arc Set Tournament, Kemeny Rank Aggregation and Betweenness Tournament

We study fixed parameter algorithms for three problems: Kemeny rank aggregation, feedback arc set tournament, and betweenness tournament. For Kemeny rank aggregation we give an algorithm with runtime \(O^*(2^{O(\sqrt{OPT})})\), where n is the number of candidates, \(OPT \le \binom{n}{2}\) is the cost of the optimal ranking, and O *(·) hides polynomial factors. This is a dramatic improvement on the previously best known runtime of O *(2 O(OPT)). For feedback arc set tournament we give an algorithm with runtime \(O^*(2^{O(\sqrt{OPT})})\), an improvement on the previously best known \(O^*(OPT^{O(\sqrt{OPT})})\) [4]. For betweenness tournament we give an algorithm with runtime \(O^*(2^{O(\sqrt{OPT/n})})\), where n is the number of vertices and \(OPT \le \binom{n}{3}\) is the optimal cost. This improves on the previously known \(O^*(OPT^{O(OPT^{1/3})})\) [28], especially when OPT is small. Unusually we can solve instances with OPT as large as n (logn)2 in polynomial time!

[1]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[2]  Rolf Niedermeier,et al.  Fixed-parameter tractability results for feedback set problems in tournaments , 2006, J. Discrete Algorithms.

[3]  Mark Braverman,et al.  Noisy sorting without resampling , 2007, SODA '08.

[4]  Noga Alon,et al.  Ranking Tournaments , 2006, SIAM J. Discret. Math..

[5]  Claire Mathieu,et al.  Electronic Colloquium on Computational Complexity, Report No. 144 (2006) How to rank with few errors A PTAS for Weighted Feedback Arc Set on Tournaments , 2006 .

[6]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[7]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[8]  Anders Yeo,et al.  The Minimum Feedback Arc Set Problem is NP-Hard for Tournaments , 2006, Combinatorics, Probability and Computing.

[9]  Rolf Niedermeier,et al.  Fixed-Parameter Algo Algorithms for Kemeny Scores , 2008 .

[10]  Jaroslav Opatrny,et al.  Total Ordering Problem , 1979, SIAM J. Comput..

[11]  Uriel Feige Faster FAST(Feedback Arc Set in Tournaments) , 2009, ArXiv.

[12]  M. Trick,et al.  Voting schemes for which it can be difficult to tell who won the election , 1989 .

[13]  Marek Karpinski,et al.  Approximation Schemes for the Betweenness Problem in Tournaments and Related Ranking Problems , 2009, APPROX-RANDOM.

[14]  Vincent Conitzer,et al.  Improved Bounds for Computing Kemeny Rankings , 2006, AAAI.

[15]  John G. Kemeny,et al.  Mathematical models in the social sciences , 1964 .

[16]  Madhu Sudan,et al.  A Geometric Approach to Betweenness , 1995, ESA.

[17]  Rolf Niedermeier,et al.  Fixed-Parameter Algorithms for Kemeny Scores , 2008, AAIM.

[18]  P.-C.-F. Daunou,et al.  Mémoire sur les élections au scrutin , 1803 .

[19]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.

[20]  Nir Ailon,et al.  Aggregating inconsistent information: Ranking and clustering , 2008 .

[21]  P. Slater Inconsistencies in a schedule of paired comparisons , 1961 .

[22]  Robert Bredereck,et al.  Fixed-Parameter Algorithms for Computing Kemeny Scores - Theory and Practice , 2010, ArXiv.

[23]  John G. Kemeny,et al.  Mathematical models in the social sciences , 1964 .

[24]  Venkatesan Guruswami,et al.  Every Permutation CSP of arity 3 is Approximation Resistant , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[25]  Noga Alon,et al.  Hardness of fully dense problems , 2007, Inf. Comput..

[26]  Rolf Niedermeier,et al.  How similarity helps to efficiently compute Kemeny rankings , 2009, AAMAS.

[27]  Noga Alon,et al.  Fast Fast , 2009, ICALP.

[28]  Atri Rudra,et al.  Ordering by weighted number of wins gives a good ranking for weighted tournaments , 2006, SODA '06.

[29]  Fedor V. Fomin,et al.  Kernels for feedback arc set in tournaments , 2009, J. Comput. Syst. Sci..

[30]  Vincent Conitzer,et al.  Computing Slater Rankings Using Similarities among Candidates , 2006, AAAI.

[31]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[32]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .