On‐Chip Manipulation of Protein‐Coated Magnetic Beads via Domain‐Wall Conduits

For this reasonmanipulationatthenanoscaleofsurfacefunctionalizedmagneticbeads in suspension is of paramount importance in biotechnol-ogy, nanochemistry, and nanomedicine as it leads to a precisecontrol of the tagged biological entity.In the past few years many approaches have been developedboth for the manipulation and transport of a massive particlepopulation or of a single particle, e.g., microfabricated current-carrying wires,

[1]  L E Helseth,et al.  Domain wall tip for manipulation of magnetic particles. , 2003, Physical review letters.

[2]  Mala L. Radhakrishnan,et al.  Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography , 2001 .

[3]  M. Donahue,et al.  Head To Head Domain Wall Structures In Thin Magnetic Stripes , 1997, 1997 IEEE International Magnetics Conference (INTERMAG'97).

[4]  Gwo-Bin Lee,et al.  New magnetic tweezers for investigation of the mechanical properties of single DNA molecules , 2006 .

[5]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[6]  Michael G. Roper,et al.  Transport and separation of biomolecular cargo on paramagnetic colloidal particles in a magnetic ratchet. , 2008, The journal of physical chemistry. B.

[7]  Gang Xiong,et al.  Submicrometer Ferromagnetic NOT Gate and Shift Register , 2002, Science.

[8]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[9]  R. Bertacco,et al.  Domain wall displacement in Py square ring for single nanometric magnetic bead detection , 2008, 0809.4649.

[10]  R. Sooryakumar,et al.  Magnetic wire traps and programmable manipulation of biological cells. , 2009, Physical review letters.

[11]  Hakho Lee,et al.  Microelectromagnets for the control of magnetic nanoparticles , 2001 .

[12]  Peter Svedlindh,et al.  A magnetic microchip for controlled transport of attomole levels of proteins. , 2010, Lab on a chip.

[13]  Geoffrey S. D. Beach,et al.  Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires , 2005, Nature materials.

[14]  Paolo Vavassori,et al.  Nanosized corners for trapping and detecting magnetic nanoparticles , 2009, Nanotechnology.

[15]  W Wernsdorfer,et al.  Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures. , 2005, Physical review letters.

[16]  Paolo Vavassori,et al.  Domain wall displacement by current pulses injection in submicrometer Permalloy square ring structures , 2007 .

[17]  Daniel L Graham,et al.  Magnetoresistive-based biosensors and biochips. , 2004, Trends in biotechnology.

[18]  Peter Svedlindh,et al.  Programmable Motion and Separation of Single Magnetic Particles on Patterned Magnetic Surfaces , 2005 .

[19]  S. Nasu,et al.  Real-space observation of current-driven domain wall motion in submicron magnetic wires. , 2003, Physical review letters.

[20]  Gang Xiong,et al.  Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure , 2003, Nature materials.

[21]  Ono,et al.  Propagation of a magnetic domain wall in a submicrometer magnetic wire , 1999, Science.

[22]  G. Zabow,et al.  Controlled transport of magnetic particles using soft magnetic patterns , 2008 .

[23]  Jacques Miltat,et al.  Faster magnetic walls in rough wires , 2003, Nature materials.

[24]  Jon Dobson,et al.  Remote control of cellular behaviour with magnetic nanoparticles. , 2008, Nature nanotechnology.

[25]  Johannes S Kanger,et al.  UvA-DARE ( Digital Academic Repository ) Micro magnetic tweezers for nanomanipulation inside live cells , 2005 .

[26]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[27]  B. Yellen,et al.  Programmable Assembly of Heterogeneous Colloidal Particle Arrays , 2004 .

[28]  J. Gilman,et al.  Nanotechnology , 2001 .

[29]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .