Redox non-innocence of thioether crowns: elucidation of the electronic structure of the mononuclear Pd(III) complexes [Pd([9]aneS3)2]3+ and [Pd([18]aneS6)]3+.

The Pd(II) complexes [Pd([9]aneS(3))(2)](PF(6))(2)·2MeCN (1) ([9]aneS(3) = 1,4,7-trithiacyclononane) and [Pd([18]aneS(6))](PF(6))(2) (2) ([18]aneS(6) = 1,4,7,10,13,16-hexathiacyclooctadecane) can be oxidized electrochemically or chemically oxidized with 70% HClO(4) to [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+), respectively. These centers have been characterized by single crystal X-ray diffraction, and by UV/vis and multifrequency electron paramagnetic resonance (EPR) spectroscopies. The single crystal X-ray structures of [Pd(III)([9]aneS(3))(2)](ClO(4))(6)·(H(3)O)(3)·(H(2)O)(4) (3) at 150 K and [Pd([18]aneS(6))](ClO(4))(6)·(H(5)O(2))(3) (4) at 90 K reveal distorted octahedral geometries with Pd-S distances of 2.3695(8), 2.3692(8), 2.5356(9) and 2.3490(6), 2.3454(5), 2.5474(6) Å, respectively, consistent with Jahn-Teller distortion at a low-spin d(7) Pd(III) center. The Pd(II) compound [Pd([9]aneS(3))(2)](PF(6))(2) shows a one-electron oxidation process in MeCN (0.2 M NBu(4)PF(6), 293 K) at E(1/2) = +0.57 V vs. Fc(+)/Fc assigned to a formal Pd(III)/Pd(II) couple. Multifrequency (Q-, X-, S-, and L-band) EPR spectroscopic analysis of [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+) gives g(iso) = 2.024, |A(iso(Pd))| = 18.9 × 10(-4) cm(-1); g(xx) = 2.046, g(yy) = 2.041, g(zz) = 2.004; |A(xx(Pd))| = 24 × 10(-4) cm(-1), |A(yy(Pd))| = 22 × 10(-4) cm(-1), |A(zz(Pd))| = 14 × 10(-4) cm(-1), |a(xx(H))| = 4 × 10(-4) cm(-1), |a(yy(H))| = 5 × 10(-4) cm(-1), |a(zz(H))| = 5.5 × 10(-4) cm(-1) for [Pd([9]aneS(3))(2)](3+), and g(iso) = 2.015, |A(iso(Pd))| = 18.8× 10(-4) cm(-1); g(xx) = 2.048 g(yy) = 2.036, g(zz) = 1.998; |a(xx(H))| = 5, |a(yy(H))| = 5, |a(zz(H))| = 6 × 10(-4) cm(-1); |A(xx(Pd))| = 23× 10(-4) cm(-1), |A(yy(Pd))| = 22 × 10(-4) cm(-1), |A(zz(Pd))| = 4 × 10(-4) cm(-1) for [Pd([18]aneS(6))](3+). Both [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+) exhibit five-line superhyperfine splitting in the g(zz) region in their frozen solution EPR spectra. Double resonance spectroscopic measurements, supported by density functional theory (DFT) calculations, permit assignment of this superhyperfine to through-bond coupling involving four (1)H centers of the macrocyclic ring. Analysis of the spin Hamiltonian parameters for the singly occupied molecular orbital (SOMO) in these complexes gives about 20.4% and 25% Pd character in [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+), respectively, consistent with the compositions calculated from scalar relativistic DFT calculations.

[1]  A. J. Blake,et al.  Redox non-innocence of thioether crowns: spectroelectrochemistry and electronic structure of formal nickel(III) complexes of aza-thioether macrocycles. , 2011, Chemistry.

[2]  N. Rath,et al.  Dinuclear palladium(III) complexes with a single unsupported bridging halide ligand: reversible formation from mononuclear palladium(II) or palladium(IV) precursors. , 2011, Angewandte Chemie.

[3]  Eunsung Lee,et al.  A dinuclear palladium catalyst for α-hydroxylation of carbonyls with O2. , 2011, Journal of the American Chemical Society.

[4]  W. Goddard,et al.  Bimetallic reductive elimination from dinuclear Pd(III) complexes. , 2010, Journal of the American Chemical Society.

[5]  M. Yamashita,et al.  Stabilization of Pd(III) states in nano-wire coordination complexes. , 2010, Chemical communications.

[6]  N. Rath,et al.  Stable mononuclear organometallic Pd(III) complexes and their C-C bond formation reactivity. , 2010, Journal of the American Chemical Society.

[7]  T. Ritter,et al.  Bimetallic Pd(III) complexes in palladium-catalysed carbon–heteroatom bond formation. , 2009, Nature chemistry.

[8]  A. J. Blake,et al.  The structural characterisation and elucidation of the electronic structure of the mononuclear Pt(III) complex [Pt([9]aneS3)2]3+ ([9]aneS3 = 1,4,7-trithiacyclononane). , 2008, Chemical communications.

[9]  A. J. Blake,et al.  Crystallographic, electrochemical, and electronic structure studies of the mononuclear complexes of Au(I)/(II)/(III) with [9]aneS2O ([9]aneS2O = 1-oxa-4,7-dithiacyclononane). , 2008, Inorganic chemistry.

[10]  A. J. Blake,et al.  Electronic structure of the mononuclear Ag(ii) complex [Ag([18]aneS(4)O(2))](2+) ([18]aneS(4)O(2) = 1,10-dioxa-4,7,13,16-tetrathiacyclooctadecane). , 2008, Chemical communications.

[11]  A. J. Blake,et al.  Redox non-innocence of thioether macrocycles: elucidation of the electronic structures of mononuclear complexes of gold(II) and silver(II). , 2006, Journal of the American Chemical Society.

[12]  F. Cotton,et al.  High yield syntheses of stable, singly bonded Pd2(6+) compounds. , 2006, Journal of the American Chemical Society.

[13]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[14]  T. Ziegler,et al.  Prediction of EPR g Tensors in Simple d1 Metal Porphyrins with Density Functional Theory , 2000 .

[15]  W. Hagen,et al.  Density functional calculations of g-tensors of low-spin iron(I) and iron(III) porphyrins , 2000 .

[16]  S. Patchkovskii,et al.  Prediction of electron paramagnetic resonance g-tensors of transition metal complexes using density functional theory: First applications to some axial d1MEX4 systems , 1999 .

[17]  F. Cotton,et al.  The First Dinuclear Complex of Palladium(III) , 1998 .

[18]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[19]  W. Setzer,et al.  Synthesis and complexation studies of mesocyclic and macrocyclic polythioethers XIV. Crown thioether complexes of palladium(II) and platinum(II) , 1996 .

[20]  P. Rieger Electron paramagnetic resonance studies of low-spin d5 transition metal complexes , 1994 .

[21]  A. J. Blake,et al.  Bis(1,4,7‐trithiacyclononane)gold Dication: A Paramagnetic, Mononuclear AuII Complex , 1990 .

[22]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[23]  T. Whitcombe,et al.  Bis(1,4,7-triazacyclononane)palladium(III): characterization and reactions of an unusually stable monomeric palladium(III) ion , 1988 .

[24]  P. Blower,et al.  High-yield one-step synthesis of 1,4,7-trithiacyclononane (9S3) , 1987 .

[25]  A. J. Blake,et al.  Structural and electrochemical studies on trithia macrocyclic complexes of palladium , 1987 .

[26]  K. Wieghardt,et al.  Weak Pd…︁S Interactions in Palladium(II) Complexes with 1,4,7‐Trithiacyclononane as Ligand , 1986 .

[27]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[28]  A. J. Blake,et al.  Palladium(II) and Platinum(II) Complexes of 1,4,7,10,13,16‐Hexathiacyclooctadecane , 1986 .

[29]  P. Hagenmuller,et al.  Palladium compounds with +III oxidation state , 1985 .

[30]  P. Hagenmuller,et al.  Palladium compounds with + III oxidation state , 1984 .

[31]  P. Hagenmuller,et al.  Characterization of the +III oxidation state of palladium in NaPdF4 , 1982 .

[32]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[33]  T. Ritter,et al.  Palladium(III) in Synthesis and Catalysis. , 2011, Topics in organometallic chemistry.

[34]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[35]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[36]  E. Baerends,et al.  g- and a-tensor calculations in the zero-order approximation for relativistic effects of Ni complexes Ni(mnt)(2)(-) and Ni(CO)(3)H as model complexes for the active center of [NiFe]-hydrogenase , 2001 .

[37]  P. Rieger Atomic Hyperfine-Coupling Parameters for the Transition Metals , 1997 .

[38]  A. J. Blake,et al.  Structural isomerism in silver thioether macrocyclic chemistry: the synthesis, redox properties and crystal structures of [Agn([15]aneS5)n][PF6]n′[Ag2([15]aneS5)2][BPh4]2 and [Ag([15]aneS5)][B(C6F5)4]([15]aneS5= 1,4,7,10,13-pentathiacyclopentadecane) , 1993 .

[39]  A. J. Blake,et al.  Synthesis, structure and electrochemistry of [Pt([10]aneS3)2][PF6]2 ([10]aneS3 = 1,4,7-trithiacyclodecane) , 1993 .

[40]  D. Collison,et al.  Electron paramagnetic resonance of d transition metal compounds , 1992 .

[41]  A. J. Blake,et al.  Nickel thioether chemistry: a re-examination of the electrochemistry of [Ni([9]aneS3)2]2+. The single-crystal X-ray structure of a nickel(III) thioether complex, [NiIII([9]aneS3)2][H5O2]3[ClO4]6([9]aneS3= 1,4,7-trithiacyclononane) , 1992 .

[42]  A. J. Blake,et al.  Synthesis, structures, and electrochemistry of palladium and platinum macrocyclic complexes of [18]aneN2S4(1,4,10,13-tetrathia-7,16-diazacyclo-octadecane) and Me2[18]aneN2S4(7,16-dimethyl-1,4,10,13-tetrathia-7,16-diazacyclo-octadecane). Single crystal X-ray structures of [Pd(Me2[18]aneN2S4)][PF6]2·M , 1990 .

[43]  A. J. Blake,et al.  Gold thioether chemistry: synthesis, structure, and redox interconversion of [Au([9]aneS3)2]+/2+/3+([9]aneS3= 1,4,7-trithiacyclononane) , 1989 .

[44]  A. J. Blake,et al.  Stabilisation of monovalent palladium by tetra-aza macrocycles , 1987 .

[45]  A. J. Blake,et al.  Stabilisation of mononuclear palladium(III). The single crystal X-ray structure of the [Pd(L)2]3+ cation (L = 1,4,7-trithiacyclononane) , 1987 .

[46]  A. J. Blake,et al.  Stabilisation of trivalent platinum by structurally accommodating thiamacrocycles , 1987 .

[47]  R. Nyholm,et al.  682. Studies in co-ordination chemistry. Part XIV. The magneto-chemistry of simple and complex fluorides of transition metals , 1952 .

[48]  A. G. Sharpe 675. Simple and complex fluorides of some noble metals , 1950 .