Elastic scattering of 35Cl and 37Cl on 24Mg

[1]  J. Ferrero,et al.  The threshold anomaly in the 32S + 40Ca interaction☆ , 1989 .

[2]  J. Ferrero,et al.  Test of complex effective interaction by folding analysis of 32S elastic scattering on sd-shell nuclei , 1988 .

[3]  Y. Nagashima,et al.  Strong energy dependence of the optical potential for /sup 32/S+/sup 58,64/Ni near the Coulomb barrier , 1987 .

[4]  F. Ballester,et al.  Folding model analysis of 32S + 32S elastic scattering at 70, 90, 97.09, 120 and 160 MeV , 1987 .

[5]  N. Mau A consistent derivation of the real and imaginary parts of the heavy ion potential below and above the Coulomb barrier , 1987 .

[6]  J. Ferrero,et al.  Folding model analysis of 32S+32S at 90 MeV and 32S+40Ca at 100 MeV by a complex-effective interaction , 1987 .

[7]  N. Mau Closure approximation to the absorptive potential in heavy ion scattering , 1986 .

[8]  I. Thompson,et al.  Energy dependence of the 16O + 60Ni potential and the optical model dispersion relation , 1985 .

[9]  I. Thompson,et al.  Evidence for a progressive failure of the double folding model at energies approaching the Coulomb barrier , 1985 .

[10]  A. Baeza,et al.  Energy-dependent renormalization coefficients of folding-model description of 32S+40Ca elastic scattering , 1984 .

[11]  J. Cook DFPOT - A program for the calculation of double folded potentials , 1984 .

[12]  A. Faessler,et al.  A complex effective force for heavy-ion collisions , 1981 .

[13]  J. Bergstrom,et al.  Elastic electron scattering from the isotopes 35Cl and 37Cl , 1980 .

[14]  A. Faessler,et al.  Nuclear matter approach to the heavy-ion optical potential , 1980 .

[15]  G. R. Satchler,et al.  Folding model potentials from realistic interactions for heavy-ion scattering , 1979 .

[16]  G. Bertsch,et al.  Interactions for inelastic scattering derived from realistic potentials , 1977 .

[17]  Herman Feshbach,et al.  A Unified Theory of Nuclear Reactions, II , 1962 .

[18]  H. Feshbach Unified Theory of Nuclear Reactions , 1958 .