Single- and multi-objective shape design of Y-noise barriers using evolutionary computation and boundary elements

The optimum shape design of Y-noise barriers is carried out using single and multi-objective evolutionary algorithms and the Boundary Element Method (BEM). Reduction of noise impact efficiency (using the insertion loss-IL-magnitude) and cost of the barrier (using its total length magnitude) are considered. A two-dimensional problem of sound propagation in the frequency domain is handled, defined by a fixed position emitting source, which pulses in a frequency range, and receptor. A noise barrier (limiting its maximum effective height) is situated between both. Its shape is modified to minimize the receptor measured sound level, which is calculated using BEM. Results of an inverse problem using the IL barrier curve as reference are successfully performed to validate the methodology. The proposed methodology is then used to obtain Y-barriers with 15% and 30% improved IL spectrum. Finally, six non-dominated solutions of the multi-objective optimum design problem are presented in detail.

[1]  S.J. Elliott,et al.  Active noise control , 1993, IEEE Signal Processing Magazine.

[2]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[3]  Meng-Sing Liou,et al.  Transonic Axial-Flow Blade Optimization: Evolutionary Algorithms/Three-Dimensional Navier-Stokes Solver , 2004 .

[4]  G. Winter,et al.  Optimising frame structures by different strategies of genetic algorithms , 2001 .

[5]  S. Chandler-Wilde,et al.  EFFICIENCY OF SINGLE NOISE BARRIERS , 1991 .

[6]  Guillermo Rein,et al.  44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .

[7]  D. H. Crombie,et al.  THE PERFORMANCE OF MULTIPLE NOISE BARRIERS , 1994 .

[8]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[9]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization , 2011, WIREs Data Mining Knowl. Discov..

[10]  R. Seznec Diffraction of sound around barriers: Use of the boundary elements technique , 1980 .

[11]  Tadeusz Burczyński,et al.  IUTAM Symposium on Evolutionary Methods in Mechanics : proceedings of the IUTAM Symposium held in Cracow, Poland, 24-27 September, 2002 , 2004 .

[12]  Alain J. Kassab,et al.  Shape optimization of acoustic scattering bodies , 2003 .

[13]  Miguel Cerrolaza,et al.  Optimization of 2D boundary element models using β-splines and genetic algorithms , 2000 .

[14]  Juan J. Aznárez,et al.  BEM–FEM coupling model for the dynamic analysis of piles and pile groups , 2007 .

[15]  Simon N. Chandler-Wilde,et al.  THE PERFORMANCE OF T-PROFILE AND ASSOCIATED NOISE BARRIERS , 1991 .

[16]  J. Periaux,et al.  Parallel evolutionary algorithms for optimization problems in aerospace engineering , 2002 .

[17]  P. Jean,et al.  Optimization of multiple edge barriers with genetic algorithms coupled with a Nelder–Mead local search , 2007 .

[18]  F. Magoulès Computational Methods for Acoustics Problems , 2007 .

[19]  Tadeusz Burczyński,et al.  IUTAM Symposium on Evolutionary Methods in Mechanics , 2004 .

[20]  Darrell Whitley,et al.  Genitor: a different genetic algorithm , 1988 .

[21]  E. N. Bazley,et al.  Acoustical properties of fibrous absorbent materials , 1970 .

[22]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[23]  Juan J. Aznárez,et al.  Three‐dimensional models of reservoir sediment and effects on the seismic response of arch dams , 2004 .

[24]  Luis F. Gonzalez,et al.  Aerodynamic Optimisation using a Robust Evolutionary Algorithm and Grid-free Flowsolver , 2006 .

[25]  Eisuke Kita,et al.  Shape optimization of continuum structures by genetic algorithm and boundary element method , 1997 .

[26]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[27]  Gilbert Syswerda,et al.  A Study of Reproduction in Generational and Steady State Genetic Algorithms , 1990, FOGA.

[28]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[29]  Juan J. Aznárez,et al.  Be analysis of bottom sediments in dynamic fluid-structure interaction problems , 2006 .

[30]  Peter J. Fleming,et al.  GA Approach to Multiple Objective Optimization for Active Noise Control , 1995 .

[31]  David Greiner,et al.  Shape design of Noise Barriers using evolutionary optimization and boundary elements , 2006 .

[32]  Dimitrios K. Karpouzos,et al.  Combined use of BEM and genetic algorithms in groundwater flow and mass transport problems , 1999 .

[33]  Soraya B. Rana,et al.  Representation Issues in Neighborhood Search and Evolutionary Algorithms , 1998 .

[34]  J. Domínguez Boundary elements in dynamics , 1993 .

[35]  G. Winter,et al.  Single and multiobjective frame optimization by evolutionary algorithms and the auto-adaptive rebirth operator , 2004 .

[36]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[37]  David Greiner,et al.  Gray Coding in Evolutionary Multicriteria Optimization: Application in Frame Structural Optimum Design , 2005, EMO.

[38]  W. Annicchiarico,et al.  Structural shape optimization 3D finite-element models based on genetic algorithms and geometric modeling , 2001 .

[39]  Kyoji Fujiwara,et al.  Performance of noise barriers with various edge shapes and acoustical conditions , 2004 .