Impact of point defects on electrochromism in WO3

Using hybrid density functional theory, we investigate the influence on electronic structure of common defects and impurities in tungsten oxide (WO3). As an easily reducible perovskite with the A-site atom missing, high concentrations of foreign dopants and oxygen deficiencies are possible. Our calculations show that both oxygen vacancies and alkali dopants are shallow donors, and we explore the physical origins for this behavior. In particular, we examine whether oxygen vacancies can give rise to localized states or small polarons. Our results show that in crystalline material no such charge localization occurs. We discuss how these results impact electrical conductivity and optical properties.

[1]  G. Wijs,et al.  Structure and electronic properties of amorphous WO3 , 1999 .

[2]  N. Skorodumova,et al.  Polaron mobility in oxygen-deficient and lithium doped tungsten trioxide , 2015, 1509.05951.

[3]  V. Wittwer,et al.  Dependence of WO 3 Electrochromic Absorption on Crystallinity , 1977 .

[4]  Kai Huang,et al.  Rechargeable lithium battery based on a single hexagonal tungsten trioxide nanowire , 2012 .

[5]  Ronald B. Goldner,et al.  High near‐infrared reflectivity modulation with polycrystalline electrochromic WO3 films , 1983 .

[6]  V. Borisenko,et al.  Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3 , 2010 .

[7]  E. Schubert,et al.  Polaron and Phonon Properties in Proton Intercalated Amorphous Tungsten Oxide Thin Films , 2008 .

[8]  R. Goldner,et al.  Ellipsometry Measurements as Direct Evidence of the Drude Model for Polycrystalline Electrochromic WO 3 Films , 1984 .

[9]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[10]  E. Salje,et al.  The W5+ polaron in crystalline low temperature WO3 ESR and optical absorption , 1980 .

[11]  Bobby To,et al.  Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications , 2006 .

[12]  H. Miyagi,et al.  A study on the stability of polarons in monoclinic WO3 , 1993 .

[13]  Janis Kleperis,et al.  Nature of fundamental absorption edge of WO3 , 1997, Other Conferences.

[14]  G. Seward,et al.  Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films , 1985 .

[15]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[16]  A. Janotti,et al.  Role of oxygen vacancies in crystalline WO3 , 2016 .

[17]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[18]  H. Arakawa,et al.  The visible light induced photocatalytic activity of tungsten trioxide powders , 2001 .

[19]  R. Tilley,et al.  Examination of substoichiometric WO3−x crystals by electron microscopy☆ , 1971 .

[20]  Nicolae Barsan,et al.  Understanding the Potential of WO3 Based Sensors for Breath Analysis , 2016, Sensors.

[21]  G. Kresse,et al.  First-principles calculations for point defects in solids , 2014 .

[22]  Michael A. Butler,et al.  Photoelectrolysis and physical properties of the semiconducting electrode WO2 , 1977 .

[23]  S. K. Deb,et al.  Electrochromic mechanism in a-WO3−y thin films , 1999 .

[24]  P. P. González-Borrero,et al.  Optical band-gap determination of nanostructured WO3 film , 2010 .

[25]  C. E. Tracy,et al.  Electrochromic coloration efficiency of a-WO3−y thin films as a function of oxygen deficiency , 1999 .

[26]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[27]  O. Madelung,et al.  Non-tetrahedrally bonded binary compounds II , 2000 .

[28]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[29]  P. Woodward,et al.  Ferroelectric Tungsten Trioxide , 1997 .

[30]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[31]  S. K. Deb,et al.  A novel electrophotographic system. , 1969, Applied optics.

[32]  R. Tilley,et al.  Polaron interaction energies in reduced tungsten trioxide , 1981 .

[33]  Stuart F. Cogan,et al.  Free‐electron electrochromic modulation in crystalline LixWO3 , 1986 .

[34]  Claes-Göran Granqvist,et al.  Electrochromism and small-polaron hopping in oxygen deficient and lithium intercalated amorphous tungsten oxide films , 2015 .

[35]  Tejs Vegge,et al.  The role of transition metal interfaces on the electronic transport in lithium–air batteries , 2011 .

[36]  Fenggong Wang,et al.  Semiconductor-to-metal transition in WO(3-x): Nature of the oxygen vacancy , 2011 .

[37]  G. Onida,et al.  Anisotropic Effects of Oxygen Vacancies on Electrochromic Properties and Conductivity of γ-Monoclinic WO3 , 2016, 1605.01704.

[38]  S. Tanisaki Crystal Structure of Monoclinic Tungsten Trioxide at Room Temperature , 1960 .

[39]  L. Berggren Optical Absorption and Electrical Conductivity in Lithium Intercalated Amorphous Tungsten Oxide Films , 2004 .

[40]  H. Shanks,et al.  Optical properties of the sodium-tungsten bronzes and tungsten trioxide , 1978 .

[41]  M. Sienko,et al.  EFFECT OF OXYGEN-DEFICIENCY ON ELECTRICAL TRANSPORT PROPERTIES OF TUNGSTEN TRIOXIDE CRYSTALS. , 1970 .

[42]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .