Continuous hp Finite Elements Based on Generalized Eigenfunctions

In this paper we present a new class of hp finite elements for product and simplicial geometries in R based on generalized eigenfunctions of the Laplace operator. Due to simultaneous orthogonality of the generalized eigenfunctions under both the H 0 and L 2 products, such finite elements have outstanding conditioning properties for second order elliptic problems. Analysis is accompanied by numerical examples, including comparisons to other popular sets of higher-order shape functions for both hp and spectral elements. AMS subject classification: 35B50, 65N60

[1]  B. Guo,et al.  The hp version of the finite element method Part 1 : The basic approximation results , 2022 .

[2]  Alberto Peano,et al.  Hierarchies of conforming finite elements for plane elasticity and plate bending , 1976 .

[3]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[4]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[5]  Joachim Schöberl,et al.  New shape functions for triangular p-FEM using integrated Jacobi polynomials , 2006, Numerische Mathematik.

[6]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[7]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[8]  Jerald L Schnoor,et al.  What the h? , 2008, Environmental science & technology.

[9]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[10]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[11]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[12]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[13]  Leszek Demkowicz,et al.  Goal-oriented hp-adaptivity for elliptic problems , 2004 .

[14]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[15]  Lung-an Ying,et al.  Partial differential equations and the finite element method , 2007, Math. Comput..

[16]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[17]  William H. Press,et al.  Numerical recipes , 1990 .

[18]  Mark Ainsworth,et al.  Hierarchic finite element bases on unstructured tetrahedral meshes , 2003 .

[19]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[20]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[21]  Raytcho D. Lazarov,et al.  Higher-order finite element methods , 2005, Math. Comput..