Heteroclinic, Homoclinic and Closed Orbits in the Chen System

Bounded orbits such as closed, homoclinic and heteroclinic orbits are discussed in this work for a Lorenz-like 3D nonlinear system. For a large spectrum of the parameters, the system has neither closed nor homoclinic orbits but has exactly two heteroclinic orbits, while under other constraints the system has symmetrical homoclinic orbits.

[1]  Thomas Wagenknecht,et al.  Detection of symmetric homoclinic orbits to saddle-centres in reversible systems , 2006 .

[2]  Alexander Lohse Stability of heteroclinic cycles in transverse bifurcations , 2015 .

[3]  Kwok-wai Chung,et al.  A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method , 2011 .

[4]  Cristian Lazureanu,et al.  A Rikitake Type System with quadratic Control , 2012, Int. J. Bifurc. Chaos.

[5]  Peng Wang,et al.  Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system , 2013 .

[6]  Guanrong Chen,et al.  Chen's Attractor Exists , 2004, Int. J. Bifurc. Chaos.

[7]  O. Pochinka,et al.  On heteroclinic separators of magnetic fields in electrically conducting fluids , 2014, 1409.8189.

[8]  Gheorghe Tigan,et al.  Heteroclinic orbits in the T and the Lü systems , 2009 .

[9]  Xiang Zhang,et al.  Darboux Polynomials and Algebraic Integrability of the Chen System , 2007, Int. J. Bifurc. Chaos.

[10]  Jaume Llibre,et al.  Global Dynamics in the Poincaré ball of the Chen System having Invariant Algebraic Surfaces , 2012, Int. J. Bifurc. Chaos.

[11]  Dmitry Turaev,et al.  Analytical search for homoclinic bifurcations in the Shimizu-Morioka model , 2011 .

[12]  Guanrong Chen,et al.  On homoclinic and heteroclinic orbits of Chen's System , 2006, Int. J. Bifurc. Chaos.

[13]  Guanrong Chen,et al.  Complex dynamics in Chen’s system☆ , 2006 .

[14]  Dmitry Turaev,et al.  On the effect of invisibility of stable periodic orbits at homoclinic bifurcations , 2012 .

[15]  Jaume Llibre,et al.  On the Dynamics of the Unified Chaotic System Between Lorenz and Chen Systems , 2015, Int. J. Bifurc. Chaos.

[16]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[17]  Tudor Bînzar,et al.  ON A HAMILTONIAN VERSION OF CONTROLS DYNAMIC FOR A DRIFT-FREE LEFT INVARIANT CONTROL SYSTEM ON G4 , 2012 .

[18]  Xianfeng Li,et al.  Nonlinear dynamics and circuit realization of a new chaotic flow: A variant of Lorenz, Chen and Lu , 2009 .