Silicon-based heterogeneous photonic integrated circuits for the mid-infrared

In this paper we present our recent work on mid-infrared photonic integrated circuits for spectroscopic sensing applications. We discuss the use of silicon-based photonic integrated circuits for this purpose and detail how a variety of optical functions in the mid-infrared besides passive waveguiding and filtering can be realized, either relying on nonlinear optics or on the integration of other materials such as GaSb-based compound semiconductors, GeSn epitaxy and PbS colloidal nanoparticles.

[1]  P. Crozat,et al.  42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. , 2009, Optics express.

[2]  S. Massar,et al.  On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides. , 2011, Optics letters.

[3]  G. Mashanovich,et al.  Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm. , 2013, Optics express.

[4]  Milos Nedeljkovic,et al.  Low loss silicon waveguides for the mid-infrared. , 2011, Optics express.

[5]  Marko Loncar,et al.  Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared , 2013, 10th International Conference on Group IV Photonics.

[6]  T. Baehr‐Jones,et al.  Silicon-on-sapphire integrated waveguides for the mid-infrared. , 2009, Optics express.

[7]  R. Baets,et al.  Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. , 2011, Optics express.

[8]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[9]  Gunther Roelkens,et al.  Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip. , 2012, Optics express.

[10]  Yu-Chi Chang,et al.  Low-loss germanium strip waveguides on silicon for the mid-infrared. , 2012, Optics letters.

[11]  M. Lipson,et al.  Mid-infrared supercontinuum generation in silicon waveguides , 2013, CLEO: 2013.

[12]  Qiming Wang,et al.  GeSn p-i-n photodetector for all telecommunication bands detection. , 2011, Optics express.

[13]  Richard A. Soref,et al.  The third-order nonlinear optical coefficients of Si, Ge, and Si1−xGex in the midwave and longwave infrared , 2011 .

[14]  Gunther Roelkens,et al.  Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation , 2012, Nature Photonics.

[15]  R. Baets,et al.  50 dB parametric on-chip gain in silicon photonic wires. , 2011, Optics letters.

[16]  Juejun Hu,et al.  Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon , 2012 .

[17]  L. Cerutti,et al.  GaSb-Based Laser, Monolithically Grown on Silicon Substrate, Emitting at 1.55 $\mu$ m at Room Temperature , 2010, IEEE Photonics Technology Letters.

[18]  J. B. Rodriguez,et al.  Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. , 2013, Optics express.

[19]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[20]  R. Soref,et al.  Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode. , 2010, Optics express.

[21]  Jurgen Michel,et al.  High performance, waveguide integrated Ge photodetectors. , 2007, Optics express.

[22]  P. Guyot-Sionnest,et al.  Mid-infrared HgTe colloidal quantum dot photodetectors , 2011 .

[23]  Laurent Cerutti,et al.  Room-temperature operation of a 2.25 μm electrically pumped laser fabricated on a silicon substrate , 2009 .

[24]  R. Baets,et al.  A silicon-based widely tunable short-wave infrared optical parametric oscillator. , 2013, Optics express.

[25]  Sasan Fathpour,et al.  Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics , 2013 .

[26]  Fatima Toor,et al.  Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits. , 2010, Optics letters.

[27]  Qi Jie Wang,et al.  Broadband high photoresponse from pure monolayer graphene photodetector , 2013, Nature Communications.

[28]  G. Roelkens,et al.  Mid-infrared to telecom-band stable supercontinuum generation in hydrogenated amorphous silicon waveguides , 2013, 2013 IEEE Photonics Conference.

[29]  Roel Baets,et al.  Homodyne laser Doppler vibrometer on silicon-on-insulator with integrated 90 degree optical hybrids. , 2013, Optics express.

[30]  Ke Xu,et al.  Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator , 2012, IEEE Photonics Journal.

[31]  R. Baets,et al.  Passive SOI devices for the short-wave-infrared , 2012 .

[32]  R Loo,et al.  GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. , 2012, Optics express.

[33]  G. Roelkens,et al.  High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared , 2012, IEEE Photonics Technology Letters.

[34]  R. Baets,et al.  Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators , 2009, IEEE Photonics Journal.

[35]  A. Vass,et al.  Infrared Methods for Gas Detection , 2006 .

[36]  R. Baets,et al.  Mid-infrared generation by frequency down-conversion across 1.2 octaves in a normally-dispersive silicon wire , 2013, CLEO: 2013.

[37]  Marko Loncar,et al.  Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared , 2013 .

[38]  Pao Tai Lin,et al.  Air-clad silicon pedestal structures for broadband mid-infrared microphotonics. , 2013, Optics letters.

[39]  David J. Richardson,et al.  Wavelength Division Multiplexing at 2μm , 2012 .

[40]  Lawrence Watters 1. United States , 2011 .

[41]  Stephen Kozacik,et al.  Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. , 2013, Optics letters.

[42]  Pao Tai Lin,et al.  Planar silicon nitride mid-infrared devices , 2013 .

[43]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[44]  N. Hattasan,et al.  Heterogeneous Integration of GaInAsSb p-i-n Photodiodes on a Silicon-on-Insulator Waveguide Circuit , 2011, IEEE Photonics Technology Letters.

[45]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[46]  G. Roelkens,et al.  Colloidal quantum dot photodetectors on silicon for short-wave infrared applications , 2013 .

[47]  A. E. Willner,et al.  On-Chip Octave-Spanning Supercontinuum in Nanostructured Silicon Waveguides Using Ultralow Pulse Energy , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[48]  Gunther Roelkens,et al.  Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers , 2013, 2013 IEEE Photonics Conference.

[49]  Dmitri V Talapin,et al.  Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands. , 2011, Journal of the American Chemical Society.

[50]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[51]  John Tolle,et al.  Ge1−ySny photoconductor structures at 1.55μm: From advanced materials to prototype devices , 2008 .

[52]  J. Bowers,et al.  III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects , 2010 .

[53]  L. Kimerling,et al.  Long wavelength infrared detection using amorphous InSb and InAs0.3Sb0.7 , 2011 .

[54]  Wavelength-Agile Near-IR Chip-Based Optical Parametric Oscillator using a Deposited Silicon Waveguide , 2013, CLEO 2013.