Thermal analysis of oxide-confined VCSEL arrays

[1]  Young Min Song,et al.  Thermal analysis of asymmetric intracavity-contacted oxide-aperture VCSELs for efficient heat dissipation , 2009 .

[2]  P. Debernardi,et al.  HOT-VELM: A Comprehensive and Efficient Code for Fully Vectorial and 3-D Hot-Cavity VCSEL Simulation , 2009, IEEE Journal of Quantum Electronics.

[3]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[4]  J. Rodríguez-Viejo,et al.  Interfacial effects on the thermal conductivity of a-Ge thin films grown on Si substrates , 2008 .

[5]  R. Sarzała,et al.  Tuning effects in optimisation of GaAs-based InGaAs/GaAs quantum-dot VCSELs , 2008 .

[6]  E. Larkins,et al.  Inclusion of thermal boundary resistance in the simulation of high-power 980 nm ridge waveguide lasers , 2008 .

[7]  Hangfeng Ji,et al.  Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices , 2007, IEEE Transactions on Electron Devices.

[8]  Markus Ortsiefer,et al.  Long-wavelength (λ = 1.55 μm) monolithic VCSEL array with > 3W CW output power , 2007 .

[9]  Robert P. Sarzała,et al.  Self-consistent model of 650 nm GaInP/AlGaInP quantum-well vertical-cavity surface-emitting diode lasers , 2007 .

[10]  E. Kapon,et al.  Thermoelectrical model for vertical cavity surface emitting lasers and arrays , 2006 .

[11]  Z. Tian,et al.  Analysis of key parameters affecting the thermal behavior and performance of quantum cascade lasers , 2006 .

[12]  Judy M Rorison,et al.  Theoretical investigation of transverse optical modes in photonic-crystal waveguides imbedded into proton-implanted and oxide-confined vertical-cavity surface-emitting lasers , 2005 .

[13]  Michael Jetter,et al.  Red VCSEL for high-temperature applications , 2004 .

[14]  J. Bengtsson,et al.  Dynamic behavior of fundamental-mode stabilized VCSELs using a shallow surface relief , 2004, IEEE Journal of Quantum Electronics.

[15]  C. Chua,et al.  Hybrid integration of GaAs-based VCSEL array with amorphous silicon sensor , 2004, IEEE Electron Device Letters.

[16]  M. Bugajski,et al.  Comprehensive self-consistent three-dimensional simulation of an operation of the GaAs-based oxide-confined 1.3-μm quantum-dot (InGa)As/GaAs vertical-cavity surface-emitting lasers , 2004 .

[17]  H. Hillmer,et al.  Modeling of ultrawidely tunable vertical cavity air-gap filters and VCSELs , 2003 .

[18]  Wolfgang Fichtner,et al.  A comprehensive VCSEL device simulator , 2003 .

[19]  Daniel Erni,et al.  VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model , 2003 .

[20]  M. Bugajski,et al.  Three-dimensional comprehensive self-consistent simulation of a room-temperature continuous-wave operation of GaAs-based 1.3-/spl mu/m quantum-dot (InGa)As/GaAs vertical-cavity surface-emitting lasers , 2003, Proceedings of 2003 5th International Conference on Transparent Optical Networks, 2003..

[21]  R. Michalzik,et al.  Operating Principles of VCSELs , 2003 .

[22]  H. Li,et al.  Vertical-cavity surface-emitting laser devices , 2003 .

[23]  T. Ouchi Thermal Analysis of Thin-Film Vertical-Cavity Surface-Emitting Lasers Using Finite Element Method , 2002 .

[24]  S. Balle,et al.  Spatio-temporal modeling of the optical properties of VCSELs in the presence of polarization effects , 2002 .

[25]  W. S. Hobson,et al.  Finite difference analysis of thermal characteristics of CW operation 850 nm lateral current injection and implant-apertured VCSEL with flip-chip bond design , 2002 .

[26]  Paul S. Ho,et al.  Thermal conductivity and interfacial thermal resistance of polymeric low k films , 2001 .

[27]  Hans Zappe,et al.  Continuous-Wave Operation of Phase-Coupled Vertical - Cavity Surface-Emitting Laser Arrays , 2000 .

[28]  Kang L. Wang,et al.  In-plane lattice thermal conductivity of a quantum-dot superlattice , 2000 .

[29]  Sung-Mo Kang,et al.  A comprehensive circuit-level model of vertical-cavity surface-emitting lasers , 1999 .

[30]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[31]  L. Register,et al.  Numerical simulation of vertical cavity surface emitting lasers. , 1998, Optics express.

[32]  B. Rahman,et al.  Accurate three-dimensional modal solutions for optical resonators with periodic layered structure by using the finite element method , 1998 .

[33]  Kent D. Choquette,et al.  Selective oxidation of buried AlGaAs versus AlAs layers , 1996 .

[34]  Joachim Piprek,et al.  Material parameters of quaternary III - V semiconductors for multilayer mirrors at wavelength , 1996 .

[35]  Kent D. Choquette,et al.  Comprehensive numerical modeling of vertical-cavity surface-emitting lasers , 1996 .

[36]  P. Dapkus,et al.  Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers , 1995, IEEE Photonics Technology Letters.

[37]  M. Osinski,et al.  Thermal analysis of closely-packed two-dimensional etched-well surface-emitting laser arrays , 1995 .

[38]  Marek Osinski,et al.  Effective thermal conductivity analysis of 1.55 mu m InGaAsP/InP vertical-cavity top-surface-emitting microlasers , 1993 .

[39]  Larry A. Coldren,et al.  Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance , 1993 .

[40]  T. Detemple,et al.  On the semiconductor laser logarithmic gain-current density relation , 1993 .

[41]  Larry A. Coldren,et al.  A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks , 1991 .

[42]  Wlodzimierz Nakwaski,et al.  Thermal conductivity of binary, ternary, and quaternary III‐V compounds , 1988 .

[43]  O. Johansen Thermal Conductivity of Soils , 1977 .