Thermal analysis of oxide-confined VCSEL arrays
暂无分享,去创建一个
[1] Young Min Song,et al. Thermal analysis of asymmetric intracavity-contacted oxide-aperture VCSELs for efficient heat dissipation , 2009 .
[2] P. Debernardi,et al. HOT-VELM: A Comprehensive and Efficient Code for Fully Vectorial and 3-D Hot-Cavity VCSEL Simulation , 2009, IEEE Journal of Quantum Electronics.
[3] T. Mexia,et al. Author ' s personal copy , 2009 .
[4] J. Rodríguez-Viejo,et al. Interfacial effects on the thermal conductivity of a-Ge thin films grown on Si substrates , 2008 .
[5] R. Sarzała,et al. Tuning effects in optimisation of GaAs-based InGaAs/GaAs quantum-dot VCSELs , 2008 .
[6] E. Larkins,et al. Inclusion of thermal boundary resistance in the simulation of high-power 980 nm ridge waveguide lasers , 2008 .
[7] Hangfeng Ji,et al. Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices , 2007, IEEE Transactions on Electron Devices.
[8] Markus Ortsiefer,et al. Long-wavelength (λ = 1.55 μm) monolithic VCSEL array with > 3W CW output power , 2007 .
[9] Robert P. Sarzała,et al. Self-consistent model of 650 nm GaInP/AlGaInP quantum-well vertical-cavity surface-emitting diode lasers , 2007 .
[10] E. Kapon,et al. Thermoelectrical model for vertical cavity surface emitting lasers and arrays , 2006 .
[11] Z. Tian,et al. Analysis of key parameters affecting the thermal behavior and performance of quantum cascade lasers , 2006 .
[12] Judy M Rorison,et al. Theoretical investigation of transverse optical modes in photonic-crystal waveguides imbedded into proton-implanted and oxide-confined vertical-cavity surface-emitting lasers , 2005 .
[13] Michael Jetter,et al. Red VCSEL for high-temperature applications , 2004 .
[14] J. Bengtsson,et al. Dynamic behavior of fundamental-mode stabilized VCSELs using a shallow surface relief , 2004, IEEE Journal of Quantum Electronics.
[15] C. Chua,et al. Hybrid integration of GaAs-based VCSEL array with amorphous silicon sensor , 2004, IEEE Electron Device Letters.
[16] M. Bugajski,et al. Comprehensive self-consistent three-dimensional simulation of an operation of the GaAs-based oxide-confined 1.3-μm quantum-dot (InGa)As/GaAs vertical-cavity surface-emitting lasers , 2004 .
[17] H. Hillmer,et al. Modeling of ultrawidely tunable vertical cavity air-gap filters and VCSELs , 2003 .
[18] Wolfgang Fichtner,et al. A comprehensive VCSEL device simulator , 2003 .
[19] Daniel Erni,et al. VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model , 2003 .
[20] M. Bugajski,et al. Three-dimensional comprehensive self-consistent simulation of a room-temperature continuous-wave operation of GaAs-based 1.3-/spl mu/m quantum-dot (InGa)As/GaAs vertical-cavity surface-emitting lasers , 2003, Proceedings of 2003 5th International Conference on Transparent Optical Networks, 2003..
[21] R. Michalzik,et al. Operating Principles of VCSELs , 2003 .
[22] H. Li,et al. Vertical-cavity surface-emitting laser devices , 2003 .
[23] T. Ouchi. Thermal Analysis of Thin-Film Vertical-Cavity Surface-Emitting Lasers Using Finite Element Method , 2002 .
[24] S. Balle,et al. Spatio-temporal modeling of the optical properties of VCSELs in the presence of polarization effects , 2002 .
[25] W. S. Hobson,et al. Finite difference analysis of thermal characteristics of CW operation 850 nm lateral current injection and implant-apertured VCSEL with flip-chip bond design , 2002 .
[26] Paul S. Ho,et al. Thermal conductivity and interfacial thermal resistance of polymeric low k films , 2001 .
[27] Hans Zappe,et al. Continuous-Wave Operation of Phase-Coupled Vertical - Cavity Surface-Emitting Laser Arrays , 2000 .
[28] Kang L. Wang,et al. In-plane lattice thermal conductivity of a quantum-dot superlattice , 2000 .
[29] Sung-Mo Kang,et al. A comprehensive circuit-level model of vertical-cavity surface-emitting lasers , 1999 .
[30] Alexander A. Balandin,et al. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .
[31] L. Register,et al. Numerical simulation of vertical cavity surface emitting lasers. , 1998, Optics express.
[32] B. Rahman,et al. Accurate three-dimensional modal solutions for optical resonators with periodic layered structure by using the finite element method , 1998 .
[33] Kent D. Choquette,et al. Selective oxidation of buried AlGaAs versus AlAs layers , 1996 .
[34] Joachim Piprek,et al. Material parameters of quaternary III - V semiconductors for multilayer mirrors at wavelength , 1996 .
[35] Kent D. Choquette,et al. Comprehensive numerical modeling of vertical-cavity surface-emitting lasers , 1996 .
[36] P. Dapkus,et al. Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers , 1995, IEEE Photonics Technology Letters.
[37] M. Osinski,et al. Thermal analysis of closely-packed two-dimensional etched-well surface-emitting laser arrays , 1995 .
[38] Marek Osinski,et al. Effective thermal conductivity analysis of 1.55 mu m InGaAsP/InP vertical-cavity top-surface-emitting microlasers , 1993 .
[39] Larry A. Coldren,et al. Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance , 1993 .
[40] T. Detemple,et al. On the semiconductor laser logarithmic gain-current density relation , 1993 .
[41] Larry A. Coldren,et al. A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks , 1991 .
[42] Wlodzimierz Nakwaski,et al. Thermal conductivity of binary, ternary, and quaternary III‐V compounds , 1988 .
[43] O. Johansen. Thermal Conductivity of Soils , 1977 .