New layered structures of cuprous chalcogenides as thin film solar cell materials: Cu2Te and Cu2Se.

The stable crystal structures of two cuprous chalcogenides of Cu2X (X=Te or Se) are predicted using an adaptive genetic algorithm in combination with first-principles density functional theory calculations. Both systems are found to prefer a unique and previously unrecognized layered structure, with the total energies much lower than all structures proposed in the literature so far. The newly discovered structures are further shown to be dynamically and mechanically stable, and possess electronic properties consistent with existing experimental observations. In particular, their layered nature is expected to prevail over other structural forms at the interfaces of thin-film solar cells, and knowledge about the precise atomic structures of the interfaces is a prerequisite for achieving long-term stability and high efficiency of CdTe and Cu(In,Ga)Se2 solar cells.

[1]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[2]  J. Soler,et al.  Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. , 2008, Physical review letters.

[3]  David Cahen,et al.  Stability of CdTe/CdS thin-film solar cells , 2000 .

[4]  A. Becke,et al.  A simple effective potential for exchange. , 2006, The Journal of chemical physics.

[5]  Dean H. Levi,et al.  Interdiffusion of CdS and Zn2SnO4 layers and its application in CdS/CdTe polycrystalline thin-film solar cells , 2001 .

[6]  M. Daszkiewicz,et al.  Crystal structure of Cu2Se , 2011 .

[7]  P. Brommer,et al.  Potfit: effective potentials from ab initio data , 2007, 0704.0185.

[8]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[9]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[10]  R. Johnson,et al.  Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers , 2004 .

[11]  Renata M. Wentzcovitch,et al.  Ultrahigh-pressure phases of H2O ice predicted using an adaptive genetic algorithm , 2011, 1108.4164.

[12]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[13]  G. B. Abdullaev,et al.  Preparation of Cu2Se Single Crystals and Investigation of their Electrical Properties , 1967 .

[14]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[15]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[16]  M. Yanagihara,et al.  Phase Diagram and Electrical Properties of Cu2-δTe , 1979 .

[17]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[18]  M. Mori,et al.  Valence band photoemission study of the copper chalcogenide compounds, Cu2S, Cu2Se and Cu2Te , 2003 .

[19]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[20]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[21]  R. Blachnik,et al.  The system copper-tellurium , 1983 .

[22]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[25]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[26]  James B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[27]  P. Brommer,et al.  Effective potentials for quasicrystals from ab-initio data , 2006, 0704.0163.

[28]  S. Kashida,et al.  X-ray study of the average structures of Cu2Se and Cu1.8S in the room temperature and the high temperature phases , 1991 .

[29]  J. Zhou,et al.  Stability and electronic structures of CuxTe , 2007 .

[30]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[31]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[32]  S. Asher,et al.  Phase control of CuxTe film and its effects on CdS/CdTe solar cell☆ , 2007 .

[33]  Martin A. Green,et al.  Solar cell efficiency tables (version 40) , 2012 .

[34]  Joshua R. Smith,et al.  Origins of the universal binding-energy relation. , 1988, Physical review. B, Condensed matter.