Effect of angular losses on the output performance of solar array on long-endurance stratospheric airship

[1]  Mingyun Lv,et al.  Optimum area of solar array for stratospheric solar-powered airship , 2017 .

[2]  Junhui Meng,et al.  Optimization of solar-powered hybrid airship conceptual design , 2017 .

[3]  Hamid Ez-Zahraouy,et al.  Photovoltaic and thermoelectric indirect coupling for maximum solar energy exploitation , 2017 .

[4]  S. C. Kaushik,et al.  An innovative thermodynamic model for performance evaluation of photovoltaic systems: Effect of wind speed and cell temperature , 2017 .

[5]  Xiande Fang,et al.  Numerical research on the thermal performance of high altitude scientific balloons , 2017 .

[6]  Jun Li,et al.  Solar array layout optimization for stratospheric airships using numerical method , 2017 .

[7]  F. Rossi,et al.  A simple method to evaluate the effectiveness of encapsulation materials for perovskite solar cells , 2016 .

[8]  Jun Li,et al.  Simplified Analytical Model for Investigating the Output Power of Solar Array on Stratospheric Airship , 2016 .

[9]  Jun Li,et al.  Thermal insulation performance of lightweight substrate for solar array on stratospheric airships , 2016 .

[10]  A. El Bouardi,et al.  On the prediction of the daily global solar radiation intensity on south-facing plane surfaces inclined at varying angles , 2016 .

[11]  Jun Li,et al.  Output performance analyses of solar array on stratospheric airship with thermal effect , 2016 .

[12]  Eduardo F. Fernández,et al.  A theoretical analysis of the impact of atmospheric parameters on the spectral, electrical and thermal performance of a concentrating III–V triple-junction solar cell , 2016 .

[13]  Yi-Bing Cheng,et al.  Encapsulation for improving the lifetime of flexible perovskite solar cells , 2015 .

[14]  José C. Páscoa,et al.  High altitude propeller design and analysis , 2015 .

[15]  Yi Zhang,et al.  Influences of initial launch conditions on flight performance of high altitude balloon ascending process , 2015 .

[16]  D. Das,et al.  Anti-reflection coatings for silicon solar cells from hydrogenated diamond like carbon , 2015 .

[17]  P. Guttmann,et al.  Thermal expansion behavior of solar cell encapsulation materials , 2015 .

[18]  M. Despotovic,et al.  Comparison of optimum tilt angles of solar collectors determined at yearly, seasonal and monthly levels , 2015 .

[19]  Zhenguo Wang,et al.  Thermal modeling of stratospheric airships , 2015 .

[20]  Zheng Guo,et al.  Solar-powered airplanes: A historical perspective and future challenges , 2014 .

[21]  Xiaochen Lu,et al.  A heat transient model for the thermal behavior prediction of stratospheric airships , 2014 .

[22]  Camelia Stanciu,et al.  Optimum tilt angle for flat plate collectors all over the World – A declination dependence formula and comparisons of three solar radiation models , 2014 .

[23]  L. Chen,et al.  Simplified analytical model for predicting the temperature of balloon on high-altitude , 2014 .

[24]  Lu Wang,et al.  Modeling and global trajectory tracking control for an over-actuated MAV , 2014, Adv. Robotics.

[25]  Jin Jang,et al.  Effect of incidence angle and polarization on the optimized layer structure of organic solar cells , 2013 .

[26]  Zheng Guo,et al.  Energy management strategy for solar-powered high-altitude long-endurance aircraft , 2013 .

[27]  Xiaojian Li,et al.  Modeling and analysis of floating performances of stratospheric semi-rigid airships , 2012 .

[28]  Xiande Fang,et al.  Research on Thermal Characteristics of Photovoltaic Array of Stratospheric Airship , 2011 .

[29]  Wei Jun,et al.  Development of an encapsulation process with polymer material for flexible solar cell devices , 2010, 2010 12th Electronics Packaging Technology Conference.

[30]  Kangwen Sun,et al.  Research on Multi-Power Management System of High-altitude Airship , 2010, 2010 Asia-Pacific Power and Energy Engineering Conference.

[31]  Lv Xiao-wu Solar Cell Area Analysis for High Altitude Airships , 2009 .

[32]  Jun Chen,et al.  A methodology for optimisation design and analysis of stratosphere airship , 2009, The Aeronautical Journal (1968).

[33]  Chunxin Yang,et al.  Thermal Analysis of a Stratospheric Airship in Working Process Thermal Analysis of a Stratospheric Airship in Working Process , 2009 .

[34]  Bifeng Song,et al.  Effect of High-Altitude Airship's Attitude on Performance of its Energy System , 2007 .

[35]  Tina Stoia,et al.  Operational Capability of High Altitude Solar Powered Airships , 2005 .

[36]  Edward J. Simburger,et al.  Evaluation of thin‐film solar cell temperature coefficients for space applications , 2005 .

[37]  H.M.S. Hussein,et al.  Performance evaluation of photovoltaic modules at different tilt angles and orientations , 2004 .

[38]  N. Martín,et al.  Calculation of the PV modules angular losses under field conditions by means of an analytical model , 2001 .

[39]  K. Eguchi,et al.  Feasibility study program on stratospheric platform airship technology in Japan , 1999 .

[40]  S. Miwa,et al.  Design and analysis of solar power system for SPF airship operations , 1999 .

[41]  E. L. Maxwell,et al.  METSTAT—The solar radiation model used in the production of the National Solar Radiation Data Base (NSRDB) , 1998 .

[42]  Rosaria Ciriminna,et al.  Flexible solar cells. , 2008, ChemSusChem.

[43]  Rodger E. Farley,et al.  Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons , 2005 .

[44]  F. Kreith,et al.  Numerical Prediction of the Performance of High Altitude Balloons , 1974 .