Jones birefringence in gases: Ab initio electron correlated results for atoms and linear molecules

The results of an ab initio investigation of the Jones birefringence (JB) of noble gases (He, Ne, Ar, Kr) and of a few linear molecules—both centrosymmetric (H2,N2,C2H2) and dipolar (CO)—carried out employing coupled cluster response techniques and rather extended correlation-consistent basis sets are presented. The relationships existing between the appropriate linear, quadratic, and cubic frequency-dependent response functions and the tensors introduced in the theoretical derivation of the anisotropy by Graham and Raab in 1983 [Proc. R. Soc. London, Ser. A, 390, 73 (1983)] are introduced. The magnitude of the effect is determined and comparison is made with that of the Cotton–Mouton effect (CME), which, together with the Kerr effect, is closely related to Jones birefringence and superimposed to it in actual measurements, and of electric field gradient induced birefringence (EFGB). CME yields anisotropies of the refractive index ≈100 to ≈3500 larger than those predicted for JB in the eight systems studie...

[1]  A. Weiss,et al.  I. Mills, T. Cvitaš, K. Homann, N. Kallay, and K. Kuchitsu: Quantities, Units and Symbols in Physical Chemistry, Iupac, Physical Chemistry Division, Blackwell Sci. Publication, Oxford 1988. 134 Seiten, Preis: £ 19.95 , 1989 .

[2]  R. E. Raab,et al.  On the Jones birefringence , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Patrick Norman,et al.  CUBIC RESPONSE FUNCTIONS IN THE MULTICONFIGURATION SELF-CONSISTENT FIELD APPROXIMATION , 1996 .

[4]  S. Krause Molecular Electro-Optics , 1981 .

[5]  Dan Jonsson,et al.  Some recent developments of high‐order response theory , 1998 .

[6]  Geoffrey L. D. Ritchie,et al.  Temperature dependence of electric field-gradient induced birefringence (Buckingham effect) and molecular quadrupole moment of N2. Comparison of experiment and theory , 2003 .

[7]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[8]  G. Stefanini,et al.  Measurement of the magnetic birefringence of noble gases , 1984 .

[9]  L. Barron,et al.  Magneto-chiral birefringence and dichroism , 1984 .

[10]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[11]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[12]  W. Hüttner,et al.  The temperature dependence of the cotton-mouton effect of ethane, ethene and ethyne , 1983 .

[13]  H. Ågren,et al.  The Cotton–Mouton effect of gaseous CO2, N2O, OCS, and CS2. A cubic response multiconfigurational self-consistent field study , 2001 .

[14]  P. Jørgensen,et al.  Ab initio study of magnetochiral birefringence , 2002 .

[15]  A. Prodell,et al.  First measurement of the magnetic birefringence of helium gas , 1991 .

[16]  Antonio Rizzo,et al.  On the molecular electric quadrupole moment and the electric-field-gradient-induced birefringence of CO2 and CS2 , 2000 .

[17]  Antonio Rizzo,et al.  Ab initio study of the electric-field-gradient-induced birefringence of a polar molecule: CO , 2000 .

[18]  R. E. Raab,et al.  A molecular theory of linear birefringence induced by crossed electric and magnetic fields , 1984 .

[19]  W. Hüttner,et al.  Cotton‐Mouton Effect and Rotational Zeeman Effect in Dilute Gases — Two Complementary Methods for the Determination of Molecular Magnetic Properties , 1982 .

[20]  W. Hüttner,et al.  The magnetic hyperpolarizability anisotropy of molecular hydrogen , 1987 .

[21]  P. Jørgensen,et al.  First-order one-electron properties in the integral-direct coupled cluster singles and doubles model , 1997 .

[22]  J. Olsen,et al.  Quadratic response functions for a multiconfigurational self‐consistent field wave function , 1992 .

[23]  D. M. Bishop,et al.  Interatomic interactions and the Cotton—Mouton effect for helium , 2002 .

[24]  Antonio Rizzo,et al.  COUPLED CLUSTER INVESTIGATION OF THE ELECTRIC-FIELD-GRADIENT-INDUCED BIREFRINGENCE OF H2, N2, C2H2, AND CH4 , 1998 .

[25]  K. Ruud,et al.  COTTON-MOUTON EFFECT AND SHIELDING POLARIZABILITIES OF ETHYLENE: AN MCSCF STUDY , 1997 .

[26]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[27]  G. Rikken,et al.  Observation of magnetoelectric linear birefringence. , 2002, Physical review letters.

[28]  R. Birss Macroscopic symmetry in space-time , 1963 .

[29]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[30]  Antonio Rizzo,et al.  Electric field dependence of magnetic properties: Multiconfigurational self‐consistent field calculations of hypermagnetizabilities and nuclear shielding polarizabilities of N2, C2H2, HCN, and H2O , 1995 .

[31]  G. Stedman,et al.  Selection rules for optical activity and linear birefringence bilinear in electric and magnetic fields , 1989 .

[32]  N. Baranova,et al.  PHYSICS OF OUR DAYS: New electro-optical and magneto-optical effects in liquids , 1977 .

[33]  C. Hättig,et al.  THE ELECTRIC-FIELD-GRADIENT-INDUCED BIREFRINGENCE OF HELIUM, NEON, ARGON, AND SF6 , 1999 .

[34]  P. Jørgensen,et al.  Frequency-dependent second hyperpolarizabilities using coupled cluster cubic response theory , 1998 .

[35]  A. D. Buckingham,et al.  The quadrupole moment of the carbon dioxide molecule , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  P. Jørgensen,et al.  Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory , 1997 .

[37]  J. Tomasi,et al.  The Cotton–Mouton effect of gaseous N2, CO, CO2, N2O, OCS and CS2: a density functional approach to high-order mixed electric and magnetic properties , 2001 .

[38]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[39]  G. Ritchie,et al.  Cotton—Mouton effect, magnetic anisotropy and molecular quadrupole moment of acetylene , 1993 .

[40]  P. Wyder,et al.  Observation of magnetoelectric directional anisotropy. , 2002, Physical review letters.

[41]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[42]  L. Barron,et al.  Time reversal and molecular properties. , 2001, Accounts of chemical research.

[43]  H. Ågren,et al.  The hypermagnetizability of molecular oxygen , 1997 .

[44]  A. Rizzo,et al.  The differential magnetizability and the Cotton-Mouton effect of gases , 1999 .

[45]  P. Fowler,et al.  An ab initio study of the molecular electric polarizabilities of N2, HCN, acetylene, and diacetylene , 1986 .

[46]  W. Hüttner,et al.  The temperature dependence of the Cotton-Mouton effect of N2, CO, N2O, CO2, OCS, and CS2 in the gaseous state , 1984 .

[47]  John Kerr Ll.D. XL. A new relation between electricity and light: Dielectrified media birefringent , 1875 .

[48]  G. Rikken,et al.  Magnetoelectric birefringences of the quantum vacuum , 2000 .

[49]  Jacopo Tomasi,et al.  The Cotton–Mouton effect of furan and its homologues in the gas phase, for the pure liquids and in solution , 2003 .

[50]  G. Rikken,et al.  Recent advances in magneto-optics , 2001 .

[51]  R. Clark Jones,et al.  A New Calculus for the Treatment of Optical Systems. VII. Properties of the N-Matrices , 1948 .

[52]  D. M. Bishop,et al.  Hypermagnetizability anisotropy (Cotton–Mouton effect) for H2 and D2 , 1991 .

[53]  Antonio Rizzo,et al.  The Cotton-Mouton effect of liquid water. Part I: The dielectric continuum model , 1997 .

[54]  A. D. Buckingham,et al.  Direct Method of Measuring Molecular Quadrupole Moments , 1959 .

[55]  W. Hüttner,et al.  The diamagnetic‐susceptibility anisotropy of O2(3Σ) from the temperature dependence of the Cotton–Mouton effect , 1983 .

[56]  Antonio Rizzo,et al.  The Cotton–Mouton effect of liquid water. Part II: The semi-continuum model , 1998 .

[57]  Ove Christiansen,et al.  Response functions in the CC3 iterative triple excitation model , 1995 .

[58]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[59]  P. Jørgensen,et al.  The magnetic hyperpolarizability anisotropy of the neon atom , 1992 .

[60]  Antonio Rizzo,et al.  The Cotton-Mouton effect in gases: Experiment and theory , 1997 .

[61]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[62]  J. Pople,et al.  CORRIGENDUM: Theoretical Studies of the Kerr Effect: I - Deviations from a Linear Polarization Law , 1955 .

[63]  K. Ruud,et al.  MCSCF calculations of hypermagnetizabilities and nuclear shielding polarizabilities of CO and CH4 , 1996 .

[64]  J. Pople,et al.  A Theory of Magnetic Double Refraction , 1956 .

[65]  Antonio Rizzo,et al.  On the electric field gradient induced birefringence and electric quadrupole moment of CO, N2O, and OCS , 2003 .

[66]  A. Prodell,et al.  Measurement of the magnetic birefringence of neon gas , 1991 .

[67]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[68]  W. Meerts,et al.  Electric and magnetic properties of carbon monoxide by molecular-beam electric-resonance spectroscopy , 1977 .

[69]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .