Elesclomol-induced increase of mitochondrial reactive oxygen species impairs glioblastoma stem-like cell survival and tumor growth

[1]  L. Ricci-Vitiani,et al.  Short tandem repeat profiling for the authentication of cancer stem‐like cells , 2020, International journal of cancer.

[2]  Vishal M. Gohil Repurposing elesclomol, an investigational drug for the treatment of copper metabolism disorders , 2020, Expert opinion on investigational drugs.

[3]  Kevin Petrecca,et al.  Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy , 2020, Nature Communications.

[4]  A. Giuliani,et al.  Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: tumor suppressor role of lncRNA MEG3 , 2020, Neuro-oncology.

[5]  J. Sacchettini,et al.  Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice , 2020, Science.

[6]  J. Modica-Napolitano,et al.  The Anticancer Agent Elesclomol Has Direct Effects on Mitochondrial Bioenergetic Function in Isolated Mammalian Mitochondria , 2019, Biomolecules.

[7]  T. Golub,et al.  Mitochondrial metabolism promotes adaptation to proteotoxic stress , 2019, Nature Chemical Biology.

[8]  Jing Wang,et al.  WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs , 2019, Nucleic Acids Res..

[9]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[10]  L. Ricci-Vitiani,et al.  Glioblastoma endothelium drives bevacizumab‐induced infiltrative growth via modulation of PLXDC1 , 2018, International journal of cancer.

[11]  D. Ricard,et al.  Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles , 2017, Journal of extracellular vesicles.

[12]  H. Frieboes,et al.  3D Mathematical Modeling of Glioblastoma Suggests That Transdifferentiated Vascular Endothelial Cells Mediate Resistance to Current Standard-of-Care Therapy. , 2017, Cancer research.

[13]  A. Olivi,et al.  The clinical value of patient-derived glioblastoma tumorspheres in predicting treatment response , 2017, Neuro-oncology.

[14]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[15]  L. Ricci-Vitiani,et al.  UCN-01 enhances cytotoxicity of irinotecan in colorectal cancer stem-like cells by impairing DNA damage response , 2016, Oncotarget.

[16]  In-geun Ryoo,et al.  Redox Modulating NRF2: A Potential Mediator of Cancer Stem Cell Resistance , 2015, Oxidative medicine and cellular longevity.

[17]  J. Rich,et al.  Cancer stem cells in glioblastoma , 2015, Genes & development.

[18]  Zhe-Sheng Chen,et al.  Cellular mechanisms of the cytotoxicity of the anticancer drug elesclomol and its complex with Cu(II). , 2015, Biochemical pharmacology.

[19]  I. Nakano,et al.  Detoxification of oxidative stress in glioma stem cells: Mechanism, clinical relevance, and therapeutic development , 2014, Journal of neuroscience research.

[20]  Andrew Hopkinson,et al.  Concise Review: Evidence for CD34 as a Common Marker for Diverse Progenitors , 2014, Stem cells.

[21]  K. Aldape,et al.  A randomized trial of bevacizumab for newly diagnosed glioblastoma. , 2014, The New England journal of medicine.

[22]  K. Hoang-Xuan,et al.  Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. , 2014, The New England journal of medicine.

[23]  T. Cloughesy,et al.  Glioblastoma: from molecular pathology to targeted treatment. , 2014, Annual review of pathology.

[24]  J. Wu,et al.  Syntheses and antitumor activities of N'1,N'3-dialkyl-N'1,N'3-di-(alkylcarbonothioyl) malonohydrazide: the discovery of elesclomol. , 2013, Bioorganic & medicinal chemistry letters.

[25]  J. D. de Groot,et al.  Acquired Resistance to Anti-VEGF Therapy in Glioblastoma Is Associated with a Mesenchymal Transition , 2013, Clinical Cancer Research.

[26]  A. Hauschild,et al.  Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[27]  Jingxuan Pan,et al.  Reactive oxygen species in cancer stem cells. , 2012, Antioxidants & redox signaling.

[28]  R. Blackman,et al.  The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. , 2012, Free radical biology & medicine.

[29]  L. Ricci-Vitiani,et al.  A BMP7 variant inhibits the tumorigenic potential of glioblastoma stem-like cells , 2012, Cell Death and Differentiation.

[30]  Mauro Biffoni,et al.  Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells , 2011, Nature.

[31]  S. Egginton,et al.  Angiogenic potential of endothelial progenitor cells and embryonic stem cells , 2011, Vascular cell.

[32]  S. Pastorino,et al.  Transdifferentiation of glioblastoma cells into vascular endothelial cells , 2011, Proceedings of the National Academy of Sciences.

[33]  I. Date,et al.  Angiogenesis and invasion in glioma , 2011, Brain Tumor Pathology.

[34]  G. Fuller,et al.  Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice , 2010, Neuro-oncology.

[35]  S. O’Day,et al.  Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  P. Keegan,et al.  FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. , 2009, The oncologist.

[37]  P. Wen,et al.  Antiangiogenic therapies for high-grade glioma , 2009, Nature Reviews Neurology.

[38]  T. Mikkelsen,et al.  Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[39]  Masahiro Inoue,et al.  Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. , 2009, Cancer cell.

[40]  L. Ricci-Vitiani,et al.  Cancer Stem Cell Analysis and Clinical Outcome in Patients with Glioblastoma Multiforme , 2008, Clinical Cancer Research.

[41]  D. Gillespie,et al.  Hypoxia‐regulated protein expression, patient characteristics, and preoperative imaging as predictors of survival in adults with glioblastoma multiforme , 2008, Cancer.

[42]  J. Bertin,et al.  Elesclomol induces cancer cell apoptosis through oxidative stress , 2008, Molecular Cancer Therapeutics.

[43]  L. Ricci-Vitiani,et al.  Mesenchymal differentiation of glioblastoma stem cells , 2008, Cell Death and Differentiation.

[44]  M. Avoli,et al.  Reduced GABAB receptor subunit expression and paired-pulse depression in a genetic model of absence seizures , 2007, Neurobiology of Disease.

[45]  P. Schumacker,et al.  Reactive oxygen species in cancer cells: live by the sword, die by the sword. , 2006, Cancer cell.

[46]  Qiulian Wu,et al.  Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. , 2006, Cancer research.

[47]  A. Ettorre,et al.  GSH depletion, protein S-glutathionylation and mitochondrial transmembrane potential hyperpolarization are early events in initiation of cell death induced by a mixture of isothiazolinones in HL60 cells. , 2006, Biochimica et biophysica acta.

[48]  P. Matarrese,et al.  Galectin-1 Sensitizes Resting Human T Lymphocytes to Fas (CD95)-mediated Cell Death via Mitochondrial Hyperpolarization, Budding, and Fission* , 2005, Journal of Biological Chemistry.

[49]  Kenneth J. Hillan,et al.  Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer , 2004, Nature Reviews Drug Discovery.

[50]  Peng Huang,et al.  ROS stress in cancer cells and therapeutic implications. , 2004, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[51]  Jinsong Liu,et al.  Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity , 2004, Cancer Chemotherapy and Pharmacology.

[52]  L. Behrend,et al.  Reactive oxygen species in oncogenic transformation. , 2003, Biochemical Society transactions.

[53]  Fang Tan,et al.  The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[54]  G. Broggi,et al.  Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma , 2003, Journal of Neuro-Oncology.

[55]  L. Morbidelli,et al.  Endothelial cells in culture: a model for studying vascular functions. , 2000, Pharmacological research.

[56]  V. Skulachev,et al.  High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria , 1997, FEBS letters.

[57]  S. Shuangshoti Primary diffuse leptomeningeal glioblastoma multiforme of brainstem and spinal cord clinically mimicking meningitis: case report and review of literature. , 1996, Journal of the Medical Association of Thailand = Chotmaihet thangphaet.

[58]  J. Yodoi,et al.  Persistent oxidative stress in cancer , 1995, FEBS letters.

[59]  Jacob D. Jaffe,et al.  Next-generation characterization of the Cancer Cell Line Encyclopedia , 2019, Nature.

[60]  T. Cloughesy,et al.  Bevacizumab for newly diagnosed glioblastoma. , 2014, The New England journal of medicine.

[61]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[62]  L. Ricci-Vitiani,et al.  Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells , 2011, Nature.

[63]  I. Bayazitov,et al.  A perivascular niche for brain tumor stem cells. , 2007, Cancer cell.

[64]  K. Hongo,et al.  A case report and review of the literature , 2006, Journal of Neuro-Oncology.

[65]  G. Semenza,et al.  HIF-1: Using Two Hands to Flip the Angiogenic Switch , 2004, Cancer and Metastasis Reviews.

[66]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[67]  M C Berenbaum,et al.  Criteria for analyzing interactions between biologically active agents. , 1981, Advances in cancer research.