Optimal preconditioners for systems defined by functions of Toeplitz matrices

Abstract We propose several circulant preconditioners for systems defined by some functions g of Toeplitz matrices A n . In this paper we are interested in solving g ( A n ) x = b by the preconditioned conjugate method or the preconditioned minimal residual method, namely in the cases when g ( z ) are the functions e z , sin ⁡ z and cos ⁡ z . Numerical results are given to show the effectiveness of the proposed preconditioners.

[1]  Andrew J. Wathen,et al.  A Preconditioned MINRES Method for Nonsymmetric Toeplitz Matrices , 2015, SIAM J. Matrix Anal. Appl..

[2]  M. Powell,et al.  Approximation theory and methods , 1984 .

[3]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[4]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[5]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[6]  R. Chan,et al.  Circulant preconditioners for complex Toeplitz matrices , 1993 .

[7]  Thomas Huckle,et al.  Circulant and Skewcirculant Matrices for Solving Toeplitz Matrix Problems , 1992, SIAM J. Matrix Anal. Appl..

[8]  A. Wathen,et al.  Preconditioning for Nonsymmetry and Time-Dependence , 2016 .

[9]  Daniel Kressner,et al.  Fast Computation of the Matrix Exponential for a Toeplitz Matrix , 2016, SIAM J. Matrix Anal. Appl..

[10]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[11]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .

[12]  Jianyu Pan,et al.  Approximate Inverse Circulant-plus-Diagonal Preconditioners for Toeplitz-plus-Diagonal Matrices , 2010, SIAM J. Sci. Comput..

[13]  A. J. Wathen,et al.  Preconditioning , 2015, Acta Numerica.

[14]  Ekkehard W. Sachs,et al.  Efficient solution of a partial integro-differential equation in finance , 2008 .

[15]  Raymond H. Chan,et al.  Preconditioners for Nondefinite Hermitian Toeplitz Systems , 2001, SIAM J. Matrix Anal. Appl..

[16]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[17]  Eugene E. Tyrtyshnikov,et al.  Optimal and Superoptimal Circulant Preconditioners , 1992, SIAM J. Matrix Anal. Appl..

[18]  Michael K. Ng Iterative Methods for Toeplitz Systems (Numerical Mathematics and Scientific Computation) , 2004 .

[19]  Fabio Di Benedetto,et al.  Analysis of Preconditioning Techniques for Ill-Conditioned Toeplitz Matrices , 1995, SIAM J. Sci. Comput..

[20]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[21]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[22]  D. Duffy Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach , 2006 .

[23]  Stefano Serra,et al.  Superlinear PCG methods for symmetric Toeplitz systems , 1999 .

[24]  Stefano Serra Capizzano,et al.  Preconditioning strategies for non‐Hermitian Toeplitz linear systems , 2005, Numer. Linear Algebra Appl..

[25]  Hai-Wei Sun,et al.  Shift-Invert Arnoldi Approximation to the Toeplitz Matrix Exponential , 2010, SIAM J. Sci. Comput..

[26]  Gabriele Steidl,et al.  Optimal trigonometric preconditioners for nonsymmetric Toeplitz systems , 1998 .

[27]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[28]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[29]  Zhi Zhao,et al.  Optimal preconditioners for functions of matrices , 2014 .

[30]  N. Higham Functions Of Matrices , 2008 .

[31]  J. Olkin LINEAR AND NONLINEAR DECONVOLUTION PROBLEMS (OPTIMIZATION) , 1986 .

[32]  B. Meini,et al.  Computing the exponential of large block-triangular block-Toeplitz matrices encountered in fluid queues , 2015, 1502.07533.

[33]  Daniel B. Szyld,et al.  An introduction to iterative Toeplitz solvers , 2009, Math. Comput..