Borel reducibility and Hölder(α) embeddability between Banach spaces
暂无分享,去创建一个
[1] J. Lindenstrauss,et al. Geometric Nonlinear Functional Analysis , 1999 .
[2] Israel Aharoni,et al. Every separable metric space is Lipschitz equivalent to a subset ofc0+ , 1974 .
[3] G. Pisier,et al. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .
[4] Assaf Naor,et al. Metric cotype , 2005, SODA '06.
[5] Stefan Heinrich,et al. Ultraproducts in Banach space theory. , 1980 .
[6] Greg Hjorth,et al. Actions by the classical Banach spaces , 2000, Journal of Symbolic Logic.
[7] N. Tomczak-Jaegermann. Banach-Mazur distances and finite-dimensional operator ideals , 1989 .
[8] Jean Bourgain,et al. On type of metric spaces , 1986 .
[9] EQUIVALENCE RELATIONS AND CLASSICAL BANACH SPACES , 2006 .
[10] I. Farah. Basis Problem for Turbulent Actions II: c0‐Equalities , 2001 .
[11] Su Gao. Invariant Descriptive Set Theory , 2008 .
[12] Gilles Pisier,et al. Holomorphic semi-groups and the geometry of Banach spaces , 1982 .
[13] A. Kechris,et al. The Descriptive Set Theory of Polish Group Actions: BETTER TOPOLOGIES , 1996 .
[14] Vladimir Kanovei,et al. Borel equivalence relations : structure and classification , 2008 .
[15] Reducibility and nonreducibility between ℓ^{} equivalence relations , 1999 .
[16] Joram Lindenstrauss,et al. Classical Banach spaces , 1973 .
[17] A. Naor,et al. Euclidean quotients of finite metric spaces , 2004, math/0406349.