Mutual information approximation via maximum likelihood estimation of density ratio

We propose a new method of approximating mutual information based on maximum likelihood estimation of a density ratio function. The proposed method, Maximum Likelihood Mutual Information (MLMI), possesses useful properties, e.g., it does not involve density estimation, the global optimal solution can be efficiently computed, it has suitable convergence properties, and model selection criteria are available. Numerical experiments show that MLMI compares favorably with existing methods.

[1]  M. V. Van Hulle,et al.  Edgeworth Approximation of Multivariate Differential Entropy , 2005, Neural Computation.

[2]  Shrikanth S. Narayanan,et al.  Universal Consistency of Data-Driven Partitions for Divergence Estimation , 2007, 2007 IEEE International Symposium on Information Theory.

[3]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[4]  Martin J. Wainwright,et al.  Nonparametric estimation of the likelihood ratio and divergence functionals , 2007, 2007 IEEE International Symposium on Information Theory.

[5]  Qing Wang,et al.  Divergence estimation of continuous distributions based on data-dependent partitions , 2005, IEEE Transactions on Information Theory.

[6]  Marc M. Van Hulle,et al.  Edgeworth Approximation of Multivariate Differential Entropy , 2005, Neural Computation.

[7]  Igor Vajda,et al.  Estimation of the Information by an Adaptive Partitioning of the Observation Space , 1999, IEEE Trans. Inf. Theory.

[8]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[9]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  A. V. D. Vaart,et al.  Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities , 2001 .

[11]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[12]  Fernando Pérez-Cruz,et al.  Kullback-Leibler divergence estimation of continuous distributions , 2008, 2008 IEEE International Symposium on Information Theory.

[13]  Marion Kee,et al.  Analysis , 2004, Machine Translation.