A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system

In this paper we propose and analyze a finite difference numerical scheme for the Poisson-Nernst-Planck equation (PNP) system. To understand the energy structure of the PNP model, we make use of the Energetic Variational Approach (EnVarA), so that the PNP system could be reformulated as a non-constant mobility $H^{-1}$ gradient flow, with singular logarithmic energy potentials involved. To ensure the unique solvability and energy stability, the mobility function is explicitly treated, while both the logarithmic and the electric potential diffusion terms are treated implicitly, due to the convex nature of these two energy functional parts. The positivity-preserving property for both concentrations, $n$ and $p$, is established at a theoretical level. This is based on the subtle fact that the singular nature of the logarithmic term around the value of $0$ prevents the numerical solution reaching the singular value, so that the numerical scheme is always well-defined. In addition, an optimal rate convergence analysis is provided in this work, in which many highly non-standard estimates have to be involved, due to the nonlinear parabolic coefficients. The higher order asymptotic expansion (up to third order temporal accuracy and fourth order spatial accuracy), the rough error estimate (to establish the $\ell^\infty$ bound for $n$ and $p$), and the refined error estimate have to be carried out to accomplish such a convergence result. In our knowledge, this work will be the first to combine the following three theoretical properties for a numerical scheme for the PNP system: (i) unique solvability and positivity, (ii) energy stability, and (iii) optimal rate convergence. A few numerical results are also presented in this article, which demonstrates the robustness of the proposed numerical scheme.

[1]  Xiao Li,et al.  Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equation , 2019, Math. Comput..

[2]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[3]  Kejia Pan,et al.  A Positivity Preserving and Free Energy Dissipative Difference Scheme for the Poisson–Nernst–Planck System , 2019, Journal of Scientific Computing.

[4]  Roger Temam,et al.  A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance , 2007, Numerische Mathematik.

[5]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[6]  Xingye Yue,et al.  Convergence analysis of a numerical scheme for the porous medium equation by an energetic variational approach , 2019, Numerical Mathematics: Theory, Methods and Applications.

[7]  John M. Stockie,et al.  Adiabatic Relaxation of Convective-Diffusive Gas Transport in a Porous Fuel Cell Electrode , 2001, SIAM J. Appl. Math..

[8]  Minxin Chen,et al.  Modeling and Simulating Asymmetrical Conductance Changes in Gramicidin Pores , 2014 .

[9]  Shouhong Wang,et al.  Surface Pressure Poisson Equation Formulation of the Primitive Equations: Numerical Schemes , 2003, SIAM J. Numer. Anal..

[10]  S. M. Wise,et al.  Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..

[11]  E Weinan,et al.  Projection method III: Spatial discretization on the staggered grid , 2002, Math. Comput..

[12]  Andreas Prohl,et al.  Convergent discretizations for the Nernst–Planck–Poisson system , 2009, Numerische Mathematik.

[13]  Cheng Wang,et al.  A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation , 2014, Numerische Mathematik.

[14]  Mohammad Mirzadeh,et al.  A conservative discretization of the Poisson-Nernst-Planck equations on adaptive Cartesian grids , 2014, J. Comput. Phys..

[15]  Cheng Wang,et al.  Convergence of gauge method for incompressible flow , 2000, Math. Comput..

[16]  Jie Ding Optimal Rate Convergence Analysis of a Second Order Numerical Scheme for the Poisson--Nernst--Planck System , 2019, Numerical Mathematics: Theory, Methods and Applications.

[17]  Kejia Pan,et al.  An energy preserving finite difference scheme for the Poisson-Nernst-Planck system , 2015, Appl. Math. Comput..

[18]  Cheng Wang,et al.  Analysis of finite difference schemes for unsteady Navier-Stokes equations in vorticity formulation , 2002, Numerische Mathematik.

[19]  Peter A. Markowich,et al.  The Stationary Semiconductor Device Equations. , 1987 .

[20]  Jingwei Hu,et al.  A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson–Nernst–Planck equations , 2020, Numerische Mathematik.

[21]  Andrei S. Dukhin,et al.  Fundamentals of Interface and Colloid Science , 2010 .

[22]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[23]  Alain Miranville On a phase-field model with a logarithmic nonlinearity , 2012 .

[24]  Zhen Guan,et al.  Convergence analysis for second‐order accurate schemes for the periodic nonlocal Allen‐Cahn and Cahn‐Hilliard equations , 2016, 1610.06973.

[25]  Minxin Chen,et al.  A parallel finite element simulator for ion transport through three‐dimensional ion channel systems , 2013, J. Comput. Chem..

[26]  Cheng Wang,et al.  An $H^2$ convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation , 2016 .

[27]  Hailiang Liu,et al.  A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems , 2016, J. Comput. Phys..

[28]  B. Eisenberg,et al.  Progress and Prospects in Permeation , 1999, The Journal of general physiology.

[29]  Hsueh-Chia Chang,et al.  Nonlinear Smoluchowski slip velocity and micro-vortex generation , 2002, Journal of Fluid Mechanics.

[30]  N. Gavish,et al.  Theory of Phase Separation and Polarization for Pure Ionic Liquids. , 2015, The journal of physical chemistry letters.

[31]  Cheng Wang,et al.  An energy-conserving second order numerical scheme for nonlinear hyperbolic equation with an exponential nonlinear term , 2015, J. Comput. Appl. Math..

[32]  Keith Promislow,et al.  The Impact of Membrane Constraint on PEM Fuel Cell Water Management , 2007 .

[33]  Cheng Wang,et al.  Analysis of a fourth order finite difference method for the incompressible Boussinesq equations , 2004, Numerische Mathematik.

[34]  Hui Zhang,et al.  A positivity-preserving, energy stable and convergent numerical scheme for the Cahn–Hilliard equation with a Flory–Huggins–Degennes energy , 2019, Communications in Mathematical Sciences.

[35]  Jian‐Guo Liu,et al.  Projection method I: convergence and numerical boundary layers , 1995 .

[36]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Structure-Preserving and Efficient Numerical Methods for Ion Transport , 2020, J. Comput. Phys..

[38]  Joseph W. Jerome Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices , 1995 .

[39]  Zhongming Wang,et al.  A Modified Poisson--Nernst--Planck Model with Excluded Volume Effect: Theory and Numerical Implementation , 2017, 1801.00751.

[40]  Cheng Wang,et al.  A Positive and Energy Stable Numerical Scheme for the Poisson-Nernst-Planck-Cahn-Hilliard Equations with Steric Interactions , 2020, J. Comput. Phys..

[41]  Steven M. Wise,et al.  Convergence Analysis of a Second Order Convex Splitting Scheme for the Modified Phase Field Crystal Equation , 2012, SIAM J. Numer. Anal..

[42]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[43]  Cheng Wang,et al.  Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential , 2017, J. Comput. Phys. X.

[44]  Zhongming Wang,et al.  Positivity preserving finite difference methods for Poisson-Nernst-Planck equations with steric interactions: Application to slit-shaped nanopore conductance , 2019, J. Comput. Phys..

[45]  Xiaofan Li,et al.  An energy-preserving discretization for the Poisson–Nernst–Planck equations , 2017, Journal of Computational Electronics.

[46]  Alain Miranville,et al.  The Cahn–Hilliard–Oono equation with singular potential , 2017 .

[47]  YunKyong Hyon,et al.  Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. , 2010, The Journal of chemical physics.

[48]  Sergey Zelik,et al.  The Cahn-Hilliard Equation with Logarithmic Potentials , 2011 .

[49]  R. J. Hunter Foundations of Colloid Science , 1987 .

[50]  R. Parsons Fundamentals of interface and colloid science, volume II. Solid-liquid interfaces , 1997 .

[51]  Hailiang Liu,et al.  Efficient, positive, and energy stable schemes for multi-D Poisson-Nernst-Planck systems , 2020, ArXiv.

[52]  Steven M. Wise,et al.  An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal Equation , 2011, SIAM J. Numer. Anal..

[53]  Huadong Gao,et al.  Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations , 2017, J. Sci. Comput..

[54]  J. Jerome Analysis of Charge Transport , 1996 .

[55]  Bob Eisenberg,et al.  A conservative finite difference scheme for Poisson–Nernst–Planck equations , 2013, Journal of Computational Electronics.

[56]  Hailiang Liu,et al.  A free energy satisfying finite difference method for Poisson-Nernst-Planck equations , 2013, J. Comput. Phys..

[57]  Bin Zheng,et al.  Error analysis of finite element method for Poisson-Nernst-Planck equations , 2016, J. Comput. Appl. Math..

[58]  Jinchao Xu,et al.  Energetically stable discretizations for charge transport and electrokinetic models , 2016, J. Comput. Phys..