Physically motivated scale interaction parameterization in reduced rank quadratic nonlinear dynamic spatio‐temporal models
暂无分享,去创建一个
[1] Christopher K. Wikle,et al. Modeling 3‐D spatio‐temporal biogeochemical processes with a forest of 1‐D statistical emulators , 2013 .
[2] C. Wikle,et al. Polynomial nonlinear spatio‐temporal integro‐difference equation models , 2011 .
[3] L. Mark Berliner,et al. Spatiotemporal Hierarchical Bayesian Modeling Tropical Ocean Surface Winds , 2001 .
[4] Michael L. Stein,et al. Limitations on low rank approximations for covariance matrices of spatial data , 2014 .
[5] G. Casella,et al. The Bayesian Lasso , 2008 .
[6] Andrew J. Majda,et al. FUNDAMENTAL LIMITATIONS OF AD HOC LINEAR AND QUADRATIC MULTI-LEVEL REGRESSION MODELS FOR PHYSICAL SYSTEMS , 2012 .
[7] Mevin B. Hooten,et al. A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian Collared-Dove , 2008, Environmental and Ecological Statistics.
[8] M. Hooten,et al. A general science-based framework for dynamical spatio-temporal models , 2010 .
[9] Andrew J. Majda,et al. Physics constrained nonlinear regression models for time series , 2012 .
[10] A. Barnston,et al. Predictive Skill of Statistical and Dynamical Climate Models in SST Forecasts during the 1997-98 El Niño Episode and the 1998 La Niña Onset. , 1999 .
[11] L. Mark Berliner,et al. Hierarchical Bayesian Time Series Models , 1996 .
[12] Noel A Cressie,et al. Long-Lead Prediction of Pacific SSTs via Bayesian Dynamic Modeling , 2000 .