Extending the 1-D Hovel Model for Coherent and Incoherent Back Reflections in Homojunction Solar Cells

In this paper we extend the analytical drift-diffusion model, or Hovel model, to model the electrical characteristics of solar cells incorporating a back mirror. We use a compact summation approach to derive modified optical generation functions in Homojunction solar cells, considering both coherent and incoherent reflections from the back reflector. These modified generation functions are then used to derive analytical formulae for the current-voltage characteristics of mirrored solar cells. We simulate the quantum efficiency of a simple GaAs np diode with a planar gold back reflector, and compare the results with the standard Hovel model using a generation function given by the Beer-Lambert law. Finally, we use the model to simulate the performance of a real GaAs solar cell device fabricated using an epitaxial-lift-off procedure, demonstrating excellent agreement between the simulated and measured characteristics.

[1]  G. B. Lush,et al.  B-coefficient in n-type GaAs , 2009 .

[2]  Z. M. Simon Li,et al.  Two‐dimensional simulation of GaInP/GaAs/Ge triple junction solar cell , 2007 .

[3]  Y. H. Tang,et al.  A simple general analytical solution for the quantum efficiency of front-surface-field solar cells , 1996 .

[4]  J. P. Connolly,et al.  Observation of photon recycling in strain-balanced quantum well solar cells , 2007 .

[5]  Yen-Kuang Kuo,et al.  Simulation of High-Efficiency GaN/InGaN p-i-n Solar Cell With Suppressed Polarization and Barrier Effects , 2013, IEEE Journal of Quantum Electronics.

[6]  K. H. Jolliffee Optical properties of thin solid films , 1954 .

[7]  A. Belghachi,et al.  Effect of the front surface field on GaAs solar cell photocurrent , 2008 .

[8]  B. Harbecke,et al.  Coherent and incoherent reflection and transmission of multilayer structures , 1986 .

[9]  N. Rafat,et al.  Analytical study of carrier photogeneration and photocurrent in thin silicon solar cells with specular and diffuse back reflection , 1999 .

[10]  Vincent Aimez,et al.  Antireflection Coating Design for Triple-Junction III–V/Ge High-Efficiency Solar Cells Using Low Absorption PECVD Silicon Nitride , 2012, IEEE Journal of Photovoltaics.

[11]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[12]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[13]  R. Stanql,et al.  AFORS-HET, Version 2.2, a Numerical Computer Program for Simulation of Heterojunction Solar Cells and Measurements , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[14]  Kenji Yamamoto,et al.  Thin-film crystalline silicon solar cells , 2002 .

[15]  Paul A. Basore,et al.  Numerical modeling of textured silicon solar cells using PC-1D , 1990 .

[16]  Sadao Adachi,et al.  Optical Constants of Crystalline and Amorphous Semiconductors , 1999 .

[17]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[18]  R. N. Hall,et al.  Recombination processes in semiconductors , 1959 .

[19]  A. Luque,et al.  Upper limits to absorption enhancement in thick solar cells using diffraction gratings , 2011 .

[20]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[21]  C. Sah,et al.  Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics , 1957, Proceedings of the IRE.

[22]  Andreas W. Bett,et al.  Simulating single‐junction GaAs solar cells including photon recycling , 2006 .

[23]  J. Nelson The physics of solar cells , 2003 .