Differential geometric treewidth estimation in adiabatic quantum computation

The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular “Chimera” physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier–Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.

[1]  Chi Wang,et al.  Quantum versus simulated annealing in wireless interference network optimization , 2016, Scientific Reports.

[2]  Chi Wang,et al.  Interference constrained network control based on curvature , 2016, 2016 American Control Conference (ACC).

[3]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[4]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[5]  C. R. Subramanian,et al.  A spectral lower bound for the treewidth of a graph and its consequences , 2003, Inf. Process. Lett..

[6]  Discrete Ricci curvature of metric spaces and Markov chains , 2008 .

[7]  Dimitrios M. Thilikos,et al.  Faster parameterized algorithms for minor containment , 2010, Theor. Comput. Sci..

[8]  Dimitrios M. Thilikos,et al.  On exact algorithms for treewidth , 2006, TALG.

[9]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[10]  J. Jost,et al.  Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator , 2011, 1105.3803.

[11]  Siddharthan Ramachandramurthi,et al.  The Structure and Number of Obstructions to Treewidth , 1997, SIAM J. Discret. Math..

[12]  Vibhav Gogate,et al.  A Complete Anytime Algorithm for Treewidth , 2004, UAI.

[13]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[14]  Arie M. C. A. Koster,et al.  Treewidth: Computational Experiments , 2001, Electron. Notes Discret. Math..

[15]  Mark W. Johnson,et al.  Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.

[16]  Alán Aspuru-Guzik,et al.  Bayesian network structure learning using quantum annealing , 2014, The European Physical Journal Special Topics.

[17]  Bryan O'Gorman,et al.  A case study in programming a quantum annealer for hard operational planning problems , 2014, Quantum Information Processing.

[18]  Laurent Viennot,et al.  Treewidth and Hyperbolicity of the Internet , 2011, 2011 IEEE 10th International Symposium on Network Computing and Applications.

[19]  Chi Wang,et al.  Wireless network capacity versus Ollivier-Ricci curvature under Heat-Diffusion (HD) protocol , 2014, 2014 American Control Conference.

[20]  R. Biswas,et al.  A quantum annealing approach for fault detection and diagnosis of graph-based systems , 2014, The European Physical Journal Special Topics.

[21]  T. Georgiou,et al.  Market Fragility, Systemic Risk, and Ricci Curvature , 2015, 1505.05182.

[22]  Y. Ollivier Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  H. Markowitz The Elimination form of the Inverse and its Application to Linear Programming , 1957 .

[25]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[26]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[27]  C. Villani Topics in Optimal Transportation , 2003 .

[28]  C. Villani Optimal Transport: Old and New , 2008 .

[29]  Shiping Liu,et al.  Ollivier’s Ricci Curvature, Local Clustering and Curvature-Dimension Inequalities on Graphs , 2011, Discret. Comput. Geom..

[30]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[31]  Chi Wang,et al.  Ollivier-Ricci curvature and fast approximation to tree-width in embeddability of QUBO problems , 2014, 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP).

[32]  C. Sander,et al.  Graph Curvature and the Robustness of Cancer Networks , 2015, 1502.04512.

[33]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[34]  Matthew French,et al.  Experimental quantum annealing: case study involving the graph isomorphism problem , 2015, Scientific Reports.

[35]  Yuliy Baryshnikov,et al.  Euclidean versus Hyperbolic Congestion in Idealized versus Experimental Networks , 2009, Internet Math..

[36]  Christof Seiler,et al.  CURVATURE AND CONCENTRATION OF HAMILTONIAN MONTE CARLO IN HIGH DIMENSIONS , 2014, 1407.1114.

[37]  Daniel Lokshtanov On the complexity of computing treelength , 2010, Discret. Appl. Math..

[38]  Arie M. C. A. Koster,et al.  Treewidth computations II. Lower bounds , 2011, Inf. Comput..

[39]  Christoph Koch,et al.  Multiple Query Optimization on the D-Wave 2X Adiabatic Quantum Computer , 2015, Proc. VLDB Endow..

[40]  Pinar Heggernes,et al.  Maximum Cardinality Search for Computing Minimal Triangulations , 2002, WG.

[41]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[42]  Andrew D. King,et al.  Algorithm engineering for a quantum annealing platform , 2014, ArXiv.

[43]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[44]  Ramin Zabih,et al.  Dynamic Programming and Graph Algorithms in Computer Vision , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Feodor F. Dragan,et al.  Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs , 2008, SCG '08.

[46]  Travis S. Humble,et al.  Adiabatic quantum programming: minor embedding with hard faults , 2012, Quantum Information Processing.

[47]  Ed Reznik,et al.  Graph Curvature for Differentiating Cancer Networks , 2015, Scientific Reports.

[48]  Y. Ollivier A survey of Ricci curvature for metric spaces and Markov chains , 2010 .

[49]  Jie Gao,et al.  Ricci curvature of the Internet topology , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[50]  Aidan Roy,et al.  A practical heuristic for finding graph minors , 2014, ArXiv.