On Zeilberger's algorithm and its q-analogue: a rigorous description
暂无分享,去创建一个
[1] Mizan Rahman,et al. Basic Hypergeometric Series , 1990 .
[2] Marko Petkovsek,et al. Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..
[3] D. Zeilberger. A holonomic systems approach to special functions identities , 1990 .
[4] Barry M. Minton,et al. Generalized Hypergeometric Function of Unit Argument , 1970 .
[5] Ravi P. Agarwal. Generalized hypergeometric series , 1963 .
[6] Tom H. Koornwinder. Handling hypergeometric series in Maple , 1990 .
[7] Doron Zeilberger,et al. The Method of Creative Telescoping , 1991, J. Symb. Comput..
[8] Doron Zeilberger,et al. An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .
[9] Bruce W. Char,et al. Maple V Library Reference Manual , 1992, Springer New York.
[10] G. Rw. Decision procedure for indefinite hypergeometric summation , 1978 .
[11] Peter Paule,et al. A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping , 1991 .
[12] P. Cartier,et al. Démonstration «automatique» d'identités et fonctions hypergéométriques [d'après D. Zeilberger] , 1992 .
[13] Doron Zeilberger,et al. A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..
[14] R. W. Gosper. Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.