On Zeilberger's algorithm and its q-analogue: a rigorous description

Gosper's and Zeilberger's algorithms for summation of terminating hypergeometric series as well as the q-versions of these algorithms are described in a very rigorous way. The paper is a companion to Maple V procedures implementing these algorithms. It concludes with the help information for these procedures.

[1]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[2]  Marko Petkovsek,et al.  Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..

[3]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[4]  Barry M. Minton,et al.  Generalized Hypergeometric Function of Unit Argument , 1970 .

[5]  Ravi P. Agarwal Generalized hypergeometric series , 1963 .

[6]  Tom H. Koornwinder Handling hypergeometric series in Maple , 1990 .

[7]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..

[8]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[9]  Bruce W. Char,et al.  Maple V Library Reference Manual , 1992, Springer New York.

[10]  G. Rw Decision procedure for indefinite hypergeometric summation , 1978 .

[11]  Peter Paule,et al.  A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping , 1991 .

[12]  P. Cartier,et al.  Démonstration «automatique» d'identités et fonctions hypergéométriques [d'après D. Zeilberger] , 1992 .

[13]  Doron Zeilberger,et al.  A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..

[14]  R. W. Gosper Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.