Process scheduling under uncertainty using multiparametric programming

In this article, the problem of process scheduling under uncertainty was studied using multiparametric programming method. Based on the uncertainty type (prices, demands, and processing times), the scheduling formulation results in different parametric problems including multiparametric mixed integer linear (mpMILP), quadratic (mpMIQP), and general nonlinear programming (mpMINLP) problem. This article analyzes the solution characteristics and proposes a novel solution framework for specific mpMILP/mpMIQP problems addressing a wide variety of scheduling problems under different types of uncertainty, which are modeled as coefficient in objective function, as coefficient of integer variable and right hand side vector of the constraints. The main idea of the proposed framework is to decompose the problem into a series of smaller subproblems, each of them producing the parametric information around a given parameter value. The parametric solution of every subproblem is retrieved by solving a series of multiparametric linear programming (mpLP) and mixed integer linear/nonlinear programming problems (MILP/MINLP). Several examples were solved to analyze the complexity and the effectiveness of the proposed method.

[1]  M. Morari,et al.  A geometric algorithm for multi-parametric linear programming , 2003 .

[2]  Efstratios N. Pistikopoulos,et al.  A novel approach to scheduling of zero-wait batch processes under processing time variations , 2007, Comput. Chem. Eng..

[3]  Juite Wang,et al.  A fuzzy robust scheduling approach for product development projects , 2004, Eur. J. Oper. Res..

[4]  C. Floudas,et al.  Production Scheduling of a Large-Scale Industrial Batch Plant. II. Reactive Scheduling , 2006 .

[5]  Christodoulos A. Floudas,et al.  Effective Continuous-Time Formulation for Short-Term Scheduling. 2. Continuous and Semicontinuous Processes , 1998 .

[6]  Marianthi G. Ierapetritou,et al.  Generate Pareto optimal solutions of scheduling problems using normal boundary intersection technique , 2007, Comput. Chem. Eng..

[7]  L. Puigjaner,et al.  Incorporating on-line scheduling strategies in integrated batch production control , 1995 .

[8]  A. Hugo,et al.  Long-range process planning under uncertainty via parametric programming , 2005 .

[9]  Costas D. Maranas,et al.  Multiperiod Planning and Scheduling of Multiproduct Batch Plants under Demand Uncertainty , 1997 .

[10]  Efstratios N. Pistikopoulos,et al.  Global Optimization for Stochastic Planning, Scheduling and Design Problems , 1996 .

[11]  I. Kuban Altinel,et al.  Scheduling of batch processes with operational uncertainties , 1996 .

[12]  Marianthi G. Ierapetritou,et al.  Short-Term Scheduling under Uncertainty Using MILP Sensitivity Analysis , 2004 .

[13]  Luis Puigjaner,et al.  Addressing Robustness in Scheduling Batch Processes with Uncertain Operation Times , 2005 .

[14]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[15]  Jaime Cerdá,et al.  Dynamic scheduling in multiproduct batch plants , 2003, Comput. Chem. Eng..

[16]  M. Ierapetritou,et al.  Robust short-term scheduling of multiproduct batch plants under demand uncertainty , 2001 .

[17]  I. Grossmann,et al.  A novel branch and bound algorithm for scheduling flowshop plants with uncertain processing times , 2002 .

[18]  Gintaras V. Reklaitis,et al.  A framework for schedule evaluation with processing uncertainty , 1999 .

[19]  L. Puigjaner,et al.  A combined scheduling/reactive scheduling strategy to minimize the effect of process operations uncertainty in batch plants , 1996 .

[20]  M. Morari,et al.  Geometric Algorithm for Multiparametric Linear Programming , 2003 .

[21]  Marianthi G. Ierapetritou,et al.  A New Approach for Efficient Rescheduling of Multiproduct Batch Plants , 2000 .

[22]  E. Pistikopoulos,et al.  A multiparametric programming approach for mixed-integer quadratic engineering problems , 2002 .

[23]  Luis Puigjaner,et al.  On-line fault diagnosis system support for reactive scheduling in multipurpose batch chemical plants , 2001 .

[24]  E. Pistikopoulos,et al.  A multiparametric programming approach for linear process engineering problems under uncertainty , 1997 .

[25]  Joaquin Acevedo and,et al.  An Efficient Algorithm for Convex Multiparametric Nonlinear Programming Problems , 2003 .

[26]  G. Goodwin,et al.  Global analytical model predictive control with input constraints , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[27]  Ignacio E. Grossmann,et al.  Scheduling optimization under uncertainty - an alternative approach , 2003, Comput. Chem. Eng..

[28]  Jaime Cerdá,et al.  An MILP framework for batch reactive scheduling with limited discrete resources , 2004, Comput. Chem. Eng..

[29]  Jun-Hyung Ryu Design and operation of enterprise-wide process networks under uncertainty , 2003 .

[30]  E. Pistikopoulos,et al.  Algorithms for the Solution of Multiparametric Mixed-Integer Nonlinear Optimization Problems , 1999 .

[31]  Christodoulos A. Floudas,et al.  A new robust optimization approach for scheduling under uncertainty: : I. Bounded uncertainty , 2004, Comput. Chem. Eng..

[32]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[33]  Luis Puigjaner,et al.  Risk Management in the Scheduling of Batch Plants under Uncertain Market Demand , 2004 .

[34]  Christodoulos A. Floudas,et al.  A new robust optimization approach for scheduling under uncertainty: II. Uncertainty with known probability distribution , 2007, Comput. Chem. Eng..

[35]  T. Johansen On multi-parametric nonlinear programming and explicit nonlinear model predictive control , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[36]  Efstratios N. Pistikopoulos,et al.  Solving scheduling problems under uncertainty using parametric programming , 2001 .

[37]  R. Sargent,et al.  A general algorithm for short-term scheduling of batch operations */I , 1993 .

[38]  D. Petrovic,et al.  A fuzzy logic based production scheduling/rescheduling in the presence of uncertain disruptions , 2006, Fuzzy Sets Syst..

[39]  Christodoulos A. Floudas,et al.  Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications , 2005, Ann. Oper. Res..