Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator.

A bulk material comprising stacked nanosheets of nickel bis(dithiolene) complexes is investigated. The average oxidation number is -3/4 for each complex unit in the as-prepared sample; oxidation or reduction respectively can change this to 0 or -1. Refined electrical conductivity measurement, involving a single microflake sample being subjected to the van der Pauw method under scanning electron microscopy control, reveals a conductivity of 1.6 × 10(2) S cm(-1), which is remarkably high for a coordination polymeric material. Conductivity is also noted to modulate with the change of oxidation state. Theoretical calculation and photoelectron emission spectroscopy reveal the stacked nanosheets to have a metallic nature. This work provides a foothold for the development of the first organic-based two-dimensional topological insulator, which will require the precise control of the oxidation state in the single-layer nickel bisdithiolene complex nanosheet (cf. Liu, F. et al. Nano Lett. 2013, 13, 2842).

[1]  Shuqin Zhou,et al.  X-Ray photoelectron spectroscopy characteristics of a novel organic semiconductor BTQBT and its derivatives , 1995 .

[2]  Yuko Yamamoto,et al.  Variable-temperature independently driven four-tip scanning tunneling microscope. , 2007, The Review of scientific instruments.

[3]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[4]  C. Dimitrakopoulos,et al.  100-GHz Transistors from Wafer-Scale Epitaxial Graphene , 2010, Science.

[5]  F. Zamora,et al.  Electrical conductive coordination polymers. , 2012, Chemical Society reviews.

[6]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[7]  Dong Qian,et al.  Spatial and energy distribution of topological edge states in single Bi(111) bilayer. , 2012, Physical review letters.

[8]  Xi Dai,et al.  Crossover of the three-dimensional topological insulator Bi 2 Se 3 to the two-dimensional limit , 2010 .

[9]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[10]  H. Nishihara,et al.  Fabrication of Dense and Multilayered Films of a Nickel Bis(dithiolene) Nanosheet by Means of the Langmuir–Schäfer Method , 2014 .

[11]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[12]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[13]  S. Louie,et al.  Electronic transport in polycrystalline graphene. , 2010, Nature materials.

[14]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[15]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[16]  Di Sun,et al.  A lamella 2D silver(I) coordination polymer constructed from in situ generated 2-mercaptobenzoic acid , 2010 .

[17]  Frank W. Heinemann,et al.  Transition metal complexes with sulfur ligands , 2000 .

[18]  Feng Liu,et al.  Organic topological insulators in organometallic lattices. , 2013, Nature communications.

[19]  P. Roushan,et al.  p -type Bi 2 Se 3 for topological insulator and low-temperature thermoelectric applications , 2009 .

[20]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[21]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[22]  Desheng Kong,et al.  Opportunities in chemistry and materials science for topological insulators and their nanostructures. , 2011, Nature chemistry.

[23]  Wenhui Dang,et al.  Few-layer nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with highly tunable chemical potential. , 2010, Nano letters.

[24]  Feng Liu,et al.  Prediction of a two-dimensional organic topological insulator. , 2013, Nano letters.

[25]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[26]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[27]  Spin-Hall insulator. , 2004, Physical review letters.

[28]  L. Balents,et al.  Topological invariants of time-reversal-invariant band structures , 2007 .

[29]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[30]  Feng Liu,et al.  Quantum anomalous Hall effect in 2D organic topological insulators. , 2013, Physical review letters.

[31]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[33]  Yi Cui,et al.  Magnetic doping and kondo effect in bi(2)se(3) nanoribbons. , 2010, Nano letters.

[34]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[35]  K. Loh,et al.  Graphene photonics, plasmonics, and broadband optoelectronic devices. , 2012, ACS nano.

[36]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[37]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[38]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).

[39]  V. Laukhin,et al.  Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound , 2000, Nature.

[40]  G. Bihlmayer,et al.  Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te3. , 2011, Physical review letters.

[41]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[42]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[43]  V. Roy,et al.  Highly conducting two-dimensional copper(I) 4-hydroxythiophenolate network. , 2010, Chemical communications.

[44]  E. Bekyarova,et al.  Covalent Chemistry for Graphene Electronics , 2011 .

[45]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[46]  Stefan Meister,et al.  Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. , 2010, Nano letters.

[47]  Mariko Miyachi,et al.  π-Conjugated nickel bis(dithiolene) complex nanosheet. , 2013, Journal of the American Chemical Society.