The microbial ecology of permafrost

Permafrost constitutes a major portion of the terrestrial cryosphere of the Earth and is a unique ecological niche for cold-adapted microorganisms. There is a relatively high microbial diversity in permafrost, although there is some variation in community composition across different permafrost features and between sites. Some microorganisms are even active at subzero temperatures in permafrost. An emerging concern is the impact of climate change and the possibility of subsequent permafrost thaw promoting microbial activity in permafrost, resulting in increased potential for greenhouse-gas emissions. This Review describes new data on the microbial ecology of permafrost and provides a platform for understanding microbial life strategies in frozen soil as well as the impact of climate change on permafrost microorganisms and their functional roles.

[1]  S. Spring,et al.  Desulfosporosinus hippei sp. nov., a mesophilic sulfate-reducing bacterium isolated from permafrost. , 2008, International journal of systematic and evolutionary microbiology.

[2]  Gaosen Zhang,et al.  Chryseobacterium xinjiangense sp. nov., isolated from alpine permafrost. , 2011, International journal of systematic and evolutionary microbiology.

[3]  S. Tuorto,et al.  Bacterial genome replication at subzero temperatures in permafrost , 2013, The ISME Journal.

[4]  P. Amato,et al.  Implications of subzero metabolic activity on long-term microbial survival in terrestrial and extraterrestrial permafrost. , 2010, Astrobiology.

[5]  Yuri Shur,et al.  Patterns of permafrost formation and degradation in relation to climate and ecosystems , 2007 .

[6]  C. Burn,et al.  Field observations of syngenetic ice wedge polygons, outer Mackenzie Delta, western Arctic coast, Canada , 2013 .

[7]  Svein Valla,et al.  Metagenomics of microbial life in extreme temperature environments. , 2013, Current opinion in biotechnology.

[8]  F. Fanale,et al.  Global distribution and migration of subsurface ice on mars , 1985 .

[9]  M. Thomashow,et al.  The Genome Sequence of Psychrobacter arcticus 273-4, a Psychroactive Siberian Permafrost Bacterium, Reveals Mechanisms for Adaptation to Low-Temperature Growth , 2010, Applied and Environmental Microbiology.

[10]  R. Mackelprang,et al.  Microbes in thawing permafrost: the unknown variable in the climate change equation , 2011, The ISME Journal.

[11]  G. Claridge,et al.  Antarctic Permafrost Soils , 2009 .

[12]  C. McKay,et al.  Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. , 2007, Astrobiology.

[13]  J. Heider,et al.  Microbial degradation of aromatic compounds — from one strategy to four , 2011, Nature Reviews Microbiology.

[14]  W. Oechel,et al.  Microbial activity in soils frozen to below −39 °C , 2006 .

[15]  D. Gilichinsky,et al.  Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. , 2005, Extremophiles.

[16]  W. Gould,et al.  Frost‐boil ecosystems: complex interactions between landforms, soils, vegetation and climate , 2004 .

[17]  D. Gilichinsky,et al.  Clostridium tagluense sp. nov., a psychrotolerant, anaerobic, spore-forming bacterium from permafrost. , 2009, International journal of systematic and evolutionary microbiology.

[18]  D. Gilichinsky,et al.  Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments , 1998 .

[19]  É. Yergeau,et al.  Microarray and Real-Time PCR Analyses of the Responses of High-Arctic Soil Bacteria to Hydrocarbon Pollution and Bioremediation Treatments , 2009, Applied and Environmental Microbiology.

[20]  D. Wagner,et al.  Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. , 2013, International journal of systematic and evolutionary microbiology.

[21]  H. Heipieper,et al.  Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. , 2007, FEMS microbiology letters.

[22]  L. Whyte,et al.  Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. , 2011, Canadian journal of microbiology.

[23]  P. Convey,et al.  Millennial timescale regeneration in a moss from Antarctica , 2014, Current Biology.

[24]  J. Kirschvink A Paleogeographic Model for Vendian and CambrianTime , 1992 .

[25]  Wendy S. Schackwitz,et al.  One Bacterial Cell, One Complete Genome , 2010, PloS one.

[26]  Hugh M. French,et al.  Lake‐ice blisters, terra nova bay area, northern victoria land, antarctica , 2009 .

[27]  P. Bergholz,et al.  Genomic Insights into Cold Adaptation of Permafrost Bacteria , 2009 .

[28]  J. Claverie,et al.  Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology , 2014, Proceedings of the National Academy of Sciences.

[29]  J. Aislabie,et al.  Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica , 2008 .

[30]  H. Lee,et al.  Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. , 2003, Journal of microbiological methods.

[31]  Hervé Hogues,et al.  The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses , 2010, The ISME Journal.

[32]  B. Xing,et al.  Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems , 2009 .

[33]  Natalia N. Ivanova,et al.  Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: A genome and transcriptome approach , 2008, BMC Genomics.

[34]  Searching for eukaryotic life preserved in Antarctic permafrost , 2012, Polar Biology.

[35]  F. Chapin,et al.  Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming , 2006, Nature.

[36]  James M Tiedje,et al.  Biodiversity of cryopegs in permafrost. , 2005, FEMS microbiology ecology.

[37]  R. Nielsen,et al.  Ancient bacteria show evidence of DNA repair , 2007, Proceedings of the National Academy of Sciences.

[38]  W. Wanek,et al.  Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. , 2005, Rapid communications in mass spectrometry : RCM.

[39]  M. David,et al.  Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw , 2011, Nature.

[40]  E. Costello Molecular phylogenetic characterization of high altitude soil microbial communities and novel, uncultivated bacterial lineages , 2007 .

[41]  M. Kalyuzhnaya,et al.  Discovery of Viable Methanotrophic Bacteria in Permafrost Sediments of Northeast Siberia , 2002, Doklady Biological Sciences.

[42]  M. Riley,et al.  Genomics of an extreme psychrophile, Psychromonas ingrahamii , 2008, BMC Genomics.

[43]  C. McKay,et al.  Metabolic Activity of Permafrost Bacteria below the Freezing Point , 2000, Applied and Environmental Microbiology.

[44]  Demequina lutea sp. nov., isolated from a high Arctic permafrost soil. , 2009, International journal of systematic and evolutionary microbiology.

[45]  L. Whyte,et al.  Bacterial and Archaeal Diversity in Permafrost , 2009 .

[46]  D. Gilichinsky,et al.  Celerinatantimonas yamalensis sp. nov., a cold-adapted diazotrophic bacterium from a cold permafrost brine. , 2013, International journal of systematic and evolutionary microbiology.

[47]  L. Whyte,et al.  Development of a sensitive radiorespiration method for detecting microbial activity at subzero temperatures. , 2007, Journal of microbiological methods.

[48]  L. Whyte,et al.  Virgibacillus arcticus sp. nov., a moderately halophilic, endospore-forming bacterium from permafrost in the Canadian high Arctic. , 2009, International Journal of Systematic and Evolutionary Microbiology.

[49]  B. Stenni,et al.  Isotopic composition and thermal regime of ice wedges in northern Victoria Land, East Antarctica , 2011 .

[50]  W. Nicholson,et al.  Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars , 2012, Proceedings of the National Academy of Sciences.

[51]  L. Whyte,et al.  Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. , 2007, FEMS microbiology ecology.

[52]  J. Rodriguez-Manfredi,et al.  Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception Island (Antarctica). , 2012, Environmental microbiology.

[53]  B. Jørgensen,et al.  Microbial life under extreme energy limitation , 2013, Nature Reviews Microbiology.

[54]  M. Guglielmin,et al.  A permafrost warming in a cooling Antarctica? , 2012, Climatic Change.

[55]  P. Crill,et al.  Discovery of a novel methanogen prevalent in thawing permafrost , 2014, Nature Communications.

[56]  C. Beer,et al.  Predicting long‐term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia , 2013, Global change biology.

[57]  B. Christner Incorporation of DNA and Protein Precursors into Macromolecules by Bacteria at −15oC , 2002, Applied and Environmental Microbiology.

[58]  P. Bergholz,et al.  Psychrobacter arcticus 273-4 Uses Resource Efficiency and Molecular Motion Adaptations for Subzero Temperature Growth , 2009, Journal of bacteriology.

[59]  W. Stafford,et al.  Bacterial Diversity in Three Different Antarctic Cold Desert Mineral Soils , 2006, Microbial Ecology.

[60]  F. Tomita,et al.  Glaciibacter superstes gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from a permafrost ice wedge. , 2009, International journal of systematic and evolutionary microbiology.

[61]  M. Torre Jorgenson,et al.  Edaphic and microclimatic controls over permafrost response to fire in interior Alaska , 2013 .

[62]  E. Rivkina,et al.  Desulfovibrio arcticus sp. nov., a psychrotolerant sulfate-reducing bacterium from a cryopeg. , 2012, International journal of systematic and evolutionary microbiology.

[63]  L. Petrovskaya,et al.  Methanobacterium veterum sp. nov., from ancient Siberian permafrost. , 2010, International journal of systematic and evolutionary microbiology.

[64]  G. Feller,et al.  Psychrophilic enzymes: hot topics in cold adaptation , 2003, Nature Reviews Microbiology.

[65]  A. Strøm,et al.  Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression , 1993, Molecular microbiology.

[66]  Yuri Shur,et al.  Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes , 2013 .

[67]  E. Dinsdale,et al.  Metagenomic Insights into Anaerobic Metabolism along an Arctic Peat Soil Profile , 2013, PloS one.

[68]  E. Stackebrandt,et al.  Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). , 2000, International journal of systematic and evolutionary microbiology.

[69]  L. Whyte,et al.  Geomicrobiology and occluded O2–CO2–Ar gas analyses provide evidence of microbial respiration in ancient terrestrial ground ice , 2011 .

[70]  P. Price,et al.  Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  L. Whyte,et al.  Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. , 2008, Environmental microbiology.

[72]  J. Priscu,et al.  Life in Antarctic Deserts and other Cold Dry Environments: Factors promoting microbial diversity in the McMurdo Dry Valleys, Antarctica , 2010 .

[73]  Kenji Yoshikawa,et al.  Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska , 2003 .

[74]  湯本 勳 Cold-adapted microorganisms , 2013 .

[75]  Natalia N. Ivanova,et al.  A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea , 2009, Nature.

[76]  Vladimir E. Romanovsky,et al.  Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis , 2010 .

[77]  Andreas Richter,et al.  Storage and mineralization of carbon and nitrogen in soils of a frost-boil tundra ecosystem in Siberia , 2005 .

[78]  L. Whyte,et al.  Life at the wedge: the activity and diversity of arctic ice wedge microbial communities. , 2012, Astrobiology.

[79]  William S. Curran,et al.  A/I: a synthesis , 1982, ACM-SE 20.

[80]  D. Cowan,et al.  Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. , 2012, FEMS microbiology ecology.

[81]  G. Feller,et al.  Psychrophilic microorganisms: challenges for life , 2006, EMBO reports.

[82]  N. Wigginton Bacterial Growth at −15°C , 2013 .

[83]  Y. Trotsenko,et al.  Aerobic methanotrophic bacteria of cold ecosystems. , 2005, FEMS microbiology ecology.

[84]  Hajo Eicken,et al.  Bacterial incorporation of leucine into protein down to -20 degrees C with evidence for potential activity in sub-eutectic saline ice formations. , 2006, Cryobiology.

[85]  J. Canadell,et al.  Soil organic carbon pools in the northern circumpolar permafrost region , 2009 .

[86]  J. William Schopf,et al.  The Proterozoic biosphere : a multidisciplinary study , 1992 .

[87]  T. Vishnivetskaya,et al.  Extended survival of several organisms and amino acids under simulated martian surface conditions , 2011 .

[88]  P. Ciais,et al.  Permafrost carbon-climate feedbacks accelerate global warming , 2011, Proceedings of the National Academy of Sciences.

[89]  Damien Marsic,et al.  Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska. , 2005, International journal of systematic and evolutionary microbiology.

[90]  D. Easterling,et al.  Changes in climate extremes and their impacts on the natural physical environment , 2012 .

[91]  M. Lau,et al.  Correction for Pointing et al., Highly specialized microbial diversity in hyper-arid polar desert , 2009, Proceedings of the National Academy of Sciences.

[92]  James W. Head,et al.  Periods of active permafrost layer formation during the geological history of Mars: Implications for circum-polar and mid-latitude surface processes , 2008 .

[93]  R. Sleator,et al.  Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. , 2001, FEMS microbiology reviews.

[94]  James M Tiedje,et al.  Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. , 2006, International journal of systematic and evolutionary microbiology.

[95]  M. K. Chattopadhyay Mechanism of bacterial adaptation to low temperature , 2006, Journal of Biosciences.

[96]  S. Foote,et al.  Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1 , 2013, The ISME Journal.

[97]  M. Guglielmin Advances in permafrost and periglacial research in Antarctica: A review , 2012 .

[98]  S. Kathariou,et al.  Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments , 2000, Extremophiles.

[99]  Miguel Ramos,et al.  Thermal state of permafrost and active‐layer monitoring in the antarctic: Advances during the international polar year 2007–2009 , 2010 .

[100]  D. Gilichinsky,et al.  Supercooled water brines within permafrost-an unknown ecological niche for microorganisms: a model for astrobiology. , 2003, Astrobiology.

[101]  D. Gilichinsky,et al.  Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. , 2011, International journal of systematic and evolutionary microbiology.

[102]  N. Panikov,et al.  Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to -35°C. , 2007 .

[103]  R. Knight,et al.  Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest , 2014, The ISME Journal.

[104]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[105]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[106]  M. Bölter,et al.  Carbon dioxide fluxes of soils and mosses in wet tundra of Taimyr Peninsula, Siberia: controlling factors and contribution to net system fluxes , 1999 .

[107]  T. A. Black,et al.  A model‐data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis , 2010 .

[108]  J. Bowman Genomic Analysis of Psychrophilic Prokaryotes , 2008 .

[109]  T. Vishnivetskaya,et al.  Bacteria in Permafrost , 2008 .

[110]  Guido Grosse,et al.  Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers , 2012 .

[111]  Torn,et al.  Storage and Turnover of Organic Matter in Soil , 2009 .

[112]  D. Gilichinsky,et al.  Fungi in Permafrost , 2009 .

[113]  R. Sinsabaugh,et al.  Landscape Distribution of Microbial Activity in the McMurdo Dry Valleys: Linked Biotic Processes, Hydrology, and Geochemistry in a Cold Desert Ecosystem , 2009, Ecosystems.

[114]  D. Gilichinsky,et al.  Characterization of Viable Bacteria from Siberian Permafrost by 16S rDNA Sequencing , 1997, Microbial Ecology.

[115]  L. Petrovskaya,et al.  Biogeochemistry of methane and methanogenic archaea in permafrost. , 2007, FEMS microbiology ecology.