Abelian Combinatorics on Words: a Survey

[1]  J. Shallit The Logical Approach to Automatic Sequences , 2022 .

[2]  Shuo Li,et al.  On the number of squares in a finite word , 2022, 2204.10204.

[3]  Shuo Li On the number of k-powers in a finite word , 2022, Adv. Appl. Math..

[4]  Michel Rigo,et al.  Binomial Complexities and Parikh-Collinear Morphisms , 2022, DLT.

[5]  Kristina Ago,et al.  On highly palindromic words: The n-ary case , 2021, Discret. Appl. Math..

[6]  Juhani Karhumäki,et al.  On Abelian Closures of Infinite Non-binary Words , 2020, Discret. Math..

[7]  J. Shallit Abelian Complexity and Synchronization , 2020, ArXiv.

[8]  Markus A. Whiteland,et al.  Abelian Closures of Infinite Binary Words , 2020, J. Comb. Theory A.

[9]  Markus A. Whiteland,et al.  Avoiding abelian powers cyclically , 2020, Adv. Appl. Math..

[10]  Matthieu Rosenfeld,et al.  Avoidability of Additive Cubes over Alphabets of Four Numbers , 2020, DLT.

[11]  Michel Rigo,et al.  On the binomial equivalence classes of finite words , 2020, Int. J. Algebra Comput..

[12]  Jarkko Peltomaki,et al.  Abelian periods of factors of Sturmian words , 2019, Journal of Number Theory.

[13]  Markus A. Whiteland,et al.  On k-abelian Equivalence and Generalized Lagrange Spectra , 2018, Acta Arithmetica.

[14]  Florian Lietard Évitabilité de puissances additives en combinatoire des mots. (Avoidability of additive powers in combinatoric on words) , 2020 .

[15]  Markus A. Whiteland,et al.  All Growth Rates of Abelian Exponents Are Attained by Infinite Binary Words , 2020, MFCS.

[16]  Svetlana Puzynina,et al.  Aperiodic Two-Dimensional Words of Small Abelian Complexity , 2019, Electron. J. Comb..

[17]  MARIE LEJEUNE,et al.  Templates for the k-Binomial Complexity of the Tribonacci Word , 2019, WORDS.

[18]  Eitan Yaakobi,et al.  On the Number of Distinct k-Decks: Enumeration and Bounds , 2019, 2019 19th International Symposium on Communications and Information Technologies (ISCIT).

[19]  Markus A. Whiteland On the k-Abelian Equivalence Relation of Finite Words , 2019 .

[20]  Gabriele Fici,et al.  Abelian Anti-Powers in Infinite Words , 2018, Adv. Appl. Math..

[21]  Markus A. Whiteland Asymptotic Abelian Complexities of Certain Morphic Binary Words , 2019, J. Autom. Lang. Comb..

[22]  Juhani Karhumäki,et al.  On Abelian Subshifts , 2018, DLT.

[23]  Pascal Ochem,et al.  Avoiding or Limiting Regularities in Words , 2018 .

[24]  Juhani Karhumäki,et al.  On k-abelian palindromes , 2018, Inf. Comput..

[25]  J. Simpson Solved and unsolved problems about abelian squares , 2018, 1802.04481.

[26]  Matthieu Rosenfeld,et al.  Avoiding Two Consecutive Blocks of Same Size and Same Sum over ℤ2 , 2015, SIAM J. Discret. Math..

[27]  Francine Blanchet-Sadri,et al.  Dyck Words, Lattice Paths, and Abelian Borders , 2017, AFL.

[28]  Jeffrey Shallit,et al.  Abelian-square-rich words , 2017, Theor. Comput. Sci..

[29]  Juhani Karhumäki,et al.  k-Abelian Equivalence and Rationality , 2016, Fundam. Informaticae.

[30]  Juhani Karhumäki,et al.  On cardinalities of k-abelian equivalence classes , 2016, Theor. Comput. Sci..

[31]  Markus A. Whiteland,et al.  A Square Root Map on Sturmian Words , 2015, Electron. J. Comb..

[32]  Juhani Karhumäki,et al.  Variations of the Morse-Hedlund Theorem for k-Abelian Equivalence , 2013, Acta Cybern..

[33]  Jamie Simpson,et al.  An abelian periodicity lemma , 2016, Theor. Comput. Sci..

[34]  Jarkko Peltomäki,et al.  Privileged Words and Sturmian Words , 2016 .

[35]  Daniel Seita,et al.  Computing abelian complexity of binary uniform morphic words , 2016, Theor. Comput. Sci..

[36]  Antonio Restivo,et al.  Anti-Powers in Infinite Words , 2016, ICALP.

[37]  Michaël Rao,et al.  Avoidability of long k-abelian repetitions , 2015, Math. Comput..

[38]  Arnaud Lefebvre,et al.  Abelian Powers and Repetitions in Sturmian Words , 2015, Theor. Comput. Sci..

[39]  Tero Harju,et al.  Abelian bordered factors and periodicity , 2015, Eur. J. Comb..

[40]  Wojciech Rytter,et al.  Maximum number of distinct and nonequivalent nonstandard squares in a word , 2014, Theor. Comput. Sci..

[41]  Matthieu Rosenfeld,et al.  Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable , 2016, MFCS.

[42]  Michaël Rao,et al.  On some generalizations of abelian power avoidability , 2015, Theor. Comput. Sci..

[43]  Michel Rigo,et al.  A New Approach to the 2-Regularity of the ℓ-Abelian Complexity of 2-Automatic Sequences , 2014, Electron. J. Comb..

[44]  Michel Rigo,et al.  Avoiding 2-binomial squares and cubes , 2013, Theor. Comput. Sci..

[45]  Ondrej Turek,et al.  Abelian complexity function of the Tribonacci word , 2013, J. Integer Seq..

[46]  Sergey V. Avgustinovich,et al.  Weak Abelian Periodicity of Infinite Words , 2013, Theory of Computing Systems.

[47]  Narad Rampersad,et al.  On the number of Abelian Bordered Words (with an Example of Automatic Theorem-Proving) , 2014, Int. J. Found. Comput. Sci..

[48]  M. Rigo Formal Languages, Automata and Numeration Systems 1: Introduction to Combinatorics on Words , 2014 .

[49]  Maxime Crochemore,et al.  Abelian borders in binary words , 2014, Discret. Appl. Math..

[50]  Narad Rampersad,et al.  A note on abelian returns in rotation words , 2014, Theor. Comput. Sci..

[51]  Masami Ito,et al.  Context-Free Languages And Primitive Words , 2014 .

[52]  Maxime Crochemore,et al.  On the average number of regularities in a word , 2014, Theor. Comput. Sci..

[53]  James D. Currie,et al.  Abelian Complexity of Fixed Point of Morphism 0 ↦ 012, 1 ↦ 02, 2 ↦ 1 , 2014, Integers.

[54]  Luca Q. Zamboni,et al.  Infinite self-shuffling words , 2013, J. Comb. Theory A.

[55]  Jeffrey Shallit,et al.  Avoiding Three Consecutive Blocks of the Same Size and Same Sum , 2011, J. ACM.

[56]  Gabriele Fici,et al.  On The Maximum Number of Abelian Squares in a Word , 2014 .

[57]  F. Blanchet-Sadri,et al.  ABELIAN COMPLEXITY OF FIXED POINT OF MORPHISM , 2014 .

[58]  Michel Rigo,et al.  Another Generalization of Abelian Equivalence: Binomial Complexity of Infinite Words , 2013, WORDS.

[59]  Francine Blanchet-Sadri,et al.  On the Asymptotic Abelian Complexity of Morphic Words , 2013, Developments in Language Theory.

[60]  Edita Pelantová,et al.  Enumerating Abelian Returns to Prefixes of Sturmian Words , 2013, WORDS.

[61]  Luca Q. Zamboni,et al.  Abelian maximal pattern complexity of words , 2013, Ergodic Theory and Dynamical Systems.

[62]  Juhani Karhumäki,et al.  On a generalization of Abelian equivalence and complexity of infinite words , 2013, J. Comb. Theory, Ser. A.

[63]  Narad Rampersad,et al.  The abelian complexity of the paperfolding word , 2012, Discret. Math..

[64]  Stepan Holub,et al.  Abelian powers in paper-folding words , 2012, J. Comb. Theory, Ser. A.

[65]  M. Rigo,et al.  Some Properties of Abelian Return Words , 2013 .

[66]  Juhani Karhumäki,et al.  Problems in between words and abelian words: k-abelian avoidability , 2012, Theor. Comput. Sci..

[67]  Juhani Karhumäki,et al.  Fine and Wilf's Theorem for k-Abelian Periods , 2012, Int. J. Found. Comput. Sci..

[68]  D. Henshall,et al.  Shuffling and Unshuffling , 2011, Bull. EATCS.

[69]  James D. Currie,et al.  Fixed points avoiding Abelian k-powers , 2011, J. Comb. Theory, Ser. A.

[70]  Michael Domaratzki,et al.  Abelian Primitive Words , 2010, Int. J. Found. Comput. Sci..

[71]  Sergey V. Avgustinovich,et al.  On abelian versions of critical factorization theorem , 2012, RAIRO Theor. Informatics Appl..

[72]  Arseny M. Shur,et al.  On Abelian repetition threshold , 2012, RAIRO Theor. Informatics Appl..

[73]  Michaël Rao,et al.  Last cases of Dejean's conjecture , 2011, Theor. Comput. Sci..

[74]  Gwénaël Richomme,et al.  Avoiding Abelian Powers in Binary Words with Bounded Abelian Complexity , 2010, Int. J. Found. Comput. Sci..

[75]  Narad Rampersad,et al.  Recurrent words with constant Abelian complexity , 2009, Adv. Appl. Math..

[76]  Gwénaël Richomme,et al.  Abelian complexity of minimal subshifts , 2009, J. Lond. Math. Soc..

[77]  James D. Currie,et al.  A proof of Dejean's conjecture , 2009, Math. Comput..

[78]  Luca Q. Zamboni,et al.  Balance and Abelian complexity of the Tribonacci word , 2009, Adv. Appl. Math..

[79]  Kalle Saari,et al.  Everywhere alpha-repetitive sequences and Sturmian words , 2010, Eur. J. Comb..

[80]  Veikko Keränen,et al.  A powerful abelian square-free substitution over 4 letters , 2009, Theor. Comput. Sci..

[81]  Aleksi Saarela,et al.  Ultimately Constant Abelian Complexity of Infinite Words , 2009, J. Autom. Lang. Comb..

[82]  Stepan Holub,et al.  On highly palindromic words , 2009, Discret. Appl. Math..

[83]  Jeffrey Shallit,et al.  Counting Abelian Squares , 2008, Electron. J. Comb..

[84]  Luca Q. Zamboni,et al.  Palindromic richness , 2008, Eur. J. Comb..

[85]  James D. Currie,et al.  Least Periods of Factors of Infinite Words , 2009, RAIRO Theor. Informatics Appl..

[86]  James D. Currie,et al.  Long binary patterns are Abelian 2-avoidable , 2008, Theor. Comput. Sci..

[87]  Jean Berstel,et al.  Repetitions in words , 2008 .

[88]  B. Marcus Symbolic Dynamics , 2008, Encyclopedia of Complexity and Systems Science.

[89]  Théodore Tapsoba,et al.  Combinatoire de mots récurrents de complexité n+2 , 2007, RAIRO Theor. Informatics Appl..

[90]  Jeffrey Shallit,et al.  Every real number greater than 1 is a critical exponent , 2007, Theor. Comput. Sci..

[91]  Lucian Ilie,et al.  Fine and Wilf's Theorem for Abelian Periods , 2006, Bull. EATCS.

[92]  Hui Rao,et al.  Maximal pattern complexity of words over l letters , 2006, Eur. J. Comb..

[93]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[94]  Ethan M. Coven,et al.  Sequences with minimal block growth , 2005, Mathematical systems theory.

[95]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[96]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[97]  James D. Currie,et al.  The Number of Ternary Words Avoiding Abelian Cubes Grows Exponentially , 2004 .

[98]  James D. Currie,et al.  The number of binary words avoiding abelian fourth powers grows exponentially , 2004, Theor. Comput. Sci..

[99]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[100]  Boris Adamczewski,et al.  Balances for fixed points of primitive substitutions , 2003, Theor. Comput. Sci..

[101]  Fabien Durand,et al.  Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’ , 2003, Ergodic Theory and Dynamical Systems.

[102]  Veikko Keränen,et al.  New Abelian Square-Free DT0L-Languages over 4 Letters , 2003 .

[103]  Luca Q. Zamboni,et al.  Sequence entropy and the maximal pattern complexity of infinite words , 2002, Ergodic Theory and Dynamical Systems.

[104]  Sergey V. Avgustinovich,et al.  Words Avoiding Abelian Inclusions , 2001, J. Autom. Lang. Comb..

[105]  David Damanik,et al.  The Index of Sturmian Sequences , 2002, Eur. J. Comb..

[106]  James D. Currie,et al.  Avoiding Patterns in the Abelian Sense , 2001, Canadian Journal of Mathematics.

[107]  Giuseppe Pirillo,et al.  Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..

[108]  Laurent Vuillon,et al.  A Characterization of Sturmian Words by Return Words , 2001, Eur. J. Comb..

[109]  Drew Vandeth,et al.  Sturmian words and words with a critical exponent , 2000, Theor. Comput. Sci..

[110]  Pascal Hubert,et al.  Suites équilibrées , 2000, Theor. Comput. Sci..

[111]  Aldo de Luca,et al.  Special factors, periodicity, and an application to Sturmian words , 2000, Acta Informatica.

[112]  Sébastien Ferenczi,et al.  Imbalances in Arnoux-Rauzy sequences , 2000 .

[113]  Lorenz Halbeisen,et al.  AN APPLICATION OF VAN DER WAERDEN'S THEOREM IN ADDITIVE NUMBER THEORY , 2000 .

[114]  James D. Currie,et al.  Words Strongly Avoiding Fractional Powers , 1999, Eur. J. Comb..

[115]  Gilles Didier,et al.  Caractérisation des N-écritures et application à l'étude des suites de complexité ultimement n+cste , 1999, Theor. Comput. Sci..

[116]  Antonio Restivo,et al.  Periodicity and the Golden Ratio , 1998, Theor. Comput. Sci..

[117]  Aviezri S. Fraenkel,et al.  How Many Squares Can a String Contain? , 1998, J. Comb. Theory, Ser. A.

[118]  Arturo Carpi,et al.  On the Number of Abelian Square-free Words on Four Letters , 1998, Discret. Appl. Math..

[119]  Sébastien Ferenczi,et al.  Transcendence of Numbers with a Low Complexity Expansion , 1997 .

[120]  Aldo de Luca,et al.  Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..

[121]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[122]  Filippo Mignosi,et al.  If a D0L Language is k-Power Free then it is Circular , 1993, ICALP.

[123]  Arturo Carpi,et al.  On Abelian Power-Free Morphisms , 1993, Int. J. Algebra Comput..

[124]  Veikko Keränen,et al.  Abelian Squares are Avoidable on 4 Letters , 1992, ICALP.

[125]  Filippo Mignosi,et al.  Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..

[126]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[127]  Filippo Mignosi,et al.  Infinite Words with Linear Subword Complexity , 1989, Theor. Comput. Sci..

[128]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[129]  Jean-Jacques Pansiot,et al.  Bornes inferieures sur la complexite des facteurs des mots infinis engendres par morphimes iteres , 1984, STACS.

[130]  A. Zimin BLOCKING SETS OF TERMS , 1984 .

[131]  G. Rauzy Suites à termes dans un alphabet fini , 1983 .

[132]  Dwight R. Bean,et al.  Avoidable patterns in strings of symbols , 1979 .

[133]  F. Michel Dekking,et al.  Strongly Non-Repetitive Sequences and Progression-Free Sets , 1979, J. Comb. Theory, Ser. A.

[134]  L. Thomas Ramsey,et al.  On certain sequences of lattice points. , 1979 .

[135]  Andrzej Ehrenfeucht,et al.  Periodicity and unbordered segments of words , 1979, Discret. Math..

[136]  Maurice Pouzet,et al.  Une caracterisation des mots periodiques , 1979, Discret. Math..

[137]  R. C. ENTRINGER,et al.  On Nonrepetitive Sequences , 1974, J. Comb. Theory, Ser. A.

[138]  Ronald L. Graham,et al.  Covering the Positive Integers by Disjoint Sets of the Form {[n alpha + beta]: n = 1, 2, ...} , 1973, J. Comb. Theory, Ser. A.

[139]  Peter C. Chapin Formal languages I , 1973, CSC '73.

[140]  Françoise Dejean,et al.  Sur un Théorème de Thue , 1972, J. Comb. Theory A.

[141]  P. Pleasants Non-repetitive sequences , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[142]  Rohit Parikh,et al.  On Context-Free Languages , 1966, JACM.

[143]  H. Wilf,et al.  Uniqueness theorems for periodic functions , 1965 .

[144]  A. B. Cook Some unsolved problems. , 1952, Hospital management.