Abelian Combinatorics on Words: a Survey
暂无分享,去创建一个
[1] J. Shallit. The Logical Approach to Automatic Sequences , 2022 .
[2] Shuo Li,et al. On the number of squares in a finite word , 2022, 2204.10204.
[3] Shuo Li. On the number of k-powers in a finite word , 2022, Adv. Appl. Math..
[4] Michel Rigo,et al. Binomial Complexities and Parikh-Collinear Morphisms , 2022, DLT.
[5] Kristina Ago,et al. On highly palindromic words: The n-ary case , 2021, Discret. Appl. Math..
[6] Juhani Karhumäki,et al. On Abelian Closures of Infinite Non-binary Words , 2020, Discret. Math..
[7] J. Shallit. Abelian Complexity and Synchronization , 2020, ArXiv.
[8] Markus A. Whiteland,et al. Abelian Closures of Infinite Binary Words , 2020, J. Comb. Theory A.
[9] Markus A. Whiteland,et al. Avoiding abelian powers cyclically , 2020, Adv. Appl. Math..
[10] Matthieu Rosenfeld,et al. Avoidability of Additive Cubes over Alphabets of Four Numbers , 2020, DLT.
[11] Michel Rigo,et al. On the binomial equivalence classes of finite words , 2020, Int. J. Algebra Comput..
[12] Jarkko Peltomaki,et al. Abelian periods of factors of Sturmian words , 2019, Journal of Number Theory.
[13] Markus A. Whiteland,et al. On k-abelian Equivalence and Generalized Lagrange Spectra , 2018, Acta Arithmetica.
[14] Florian Lietard. Évitabilité de puissances additives en combinatoire des mots. (Avoidability of additive powers in combinatoric on words) , 2020 .
[15] Markus A. Whiteland,et al. All Growth Rates of Abelian Exponents Are Attained by Infinite Binary Words , 2020, MFCS.
[16] Svetlana Puzynina,et al. Aperiodic Two-Dimensional Words of Small Abelian Complexity , 2019, Electron. J. Comb..
[17] MARIE LEJEUNE,et al. Templates for the k-Binomial Complexity of the Tribonacci Word , 2019, WORDS.
[18] Eitan Yaakobi,et al. On the Number of Distinct k-Decks: Enumeration and Bounds , 2019, 2019 19th International Symposium on Communications and Information Technologies (ISCIT).
[19] Markus A. Whiteland. On the k-Abelian Equivalence Relation of Finite Words , 2019 .
[20] Gabriele Fici,et al. Abelian Anti-Powers in Infinite Words , 2018, Adv. Appl. Math..
[21] Markus A. Whiteland. Asymptotic Abelian Complexities of Certain Morphic Binary Words , 2019, J. Autom. Lang. Comb..
[22] Juhani Karhumäki,et al. On Abelian Subshifts , 2018, DLT.
[23] Pascal Ochem,et al. Avoiding or Limiting Regularities in Words , 2018 .
[24] Juhani Karhumäki,et al. On k-abelian palindromes , 2018, Inf. Comput..
[25] J. Simpson. Solved and unsolved problems about abelian squares , 2018, 1802.04481.
[26] Matthieu Rosenfeld,et al. Avoiding Two Consecutive Blocks of Same Size and Same Sum over ℤ2 , 2015, SIAM J. Discret. Math..
[27] Francine Blanchet-Sadri,et al. Dyck Words, Lattice Paths, and Abelian Borders , 2017, AFL.
[28] Jeffrey Shallit,et al. Abelian-square-rich words , 2017, Theor. Comput. Sci..
[29] Juhani Karhumäki,et al. k-Abelian Equivalence and Rationality , 2016, Fundam. Informaticae.
[30] Juhani Karhumäki,et al. On cardinalities of k-abelian equivalence classes , 2016, Theor. Comput. Sci..
[31] Markus A. Whiteland,et al. A Square Root Map on Sturmian Words , 2015, Electron. J. Comb..
[32] Juhani Karhumäki,et al. Variations of the Morse-Hedlund Theorem for k-Abelian Equivalence , 2013, Acta Cybern..
[33] Jamie Simpson,et al. An abelian periodicity lemma , 2016, Theor. Comput. Sci..
[34] Jarkko Peltomäki,et al. Privileged Words and Sturmian Words , 2016 .
[35] Daniel Seita,et al. Computing abelian complexity of binary uniform morphic words , 2016, Theor. Comput. Sci..
[36] Antonio Restivo,et al. Anti-Powers in Infinite Words , 2016, ICALP.
[37] Michaël Rao,et al. Avoidability of long k-abelian repetitions , 2015, Math. Comput..
[38] Arnaud Lefebvre,et al. Abelian Powers and Repetitions in Sturmian Words , 2015, Theor. Comput. Sci..
[39] Tero Harju,et al. Abelian bordered factors and periodicity , 2015, Eur. J. Comb..
[40] Wojciech Rytter,et al. Maximum number of distinct and nonequivalent nonstandard squares in a word , 2014, Theor. Comput. Sci..
[41] Matthieu Rosenfeld,et al. Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable , 2016, MFCS.
[42] Michaël Rao,et al. On some generalizations of abelian power avoidability , 2015, Theor. Comput. Sci..
[43] Michel Rigo,et al. A New Approach to the 2-Regularity of the ℓ-Abelian Complexity of 2-Automatic Sequences , 2014, Electron. J. Comb..
[44] Michel Rigo,et al. Avoiding 2-binomial squares and cubes , 2013, Theor. Comput. Sci..
[45] Ondrej Turek,et al. Abelian complexity function of the Tribonacci word , 2013, J. Integer Seq..
[46] Sergey V. Avgustinovich,et al. Weak Abelian Periodicity of Infinite Words , 2013, Theory of Computing Systems.
[47] Narad Rampersad,et al. On the number of Abelian Bordered Words (with an Example of Automatic Theorem-Proving) , 2014, Int. J. Found. Comput. Sci..
[48] M. Rigo. Formal Languages, Automata and Numeration Systems 1: Introduction to Combinatorics on Words , 2014 .
[49] Maxime Crochemore,et al. Abelian borders in binary words , 2014, Discret. Appl. Math..
[50] Narad Rampersad,et al. A note on abelian returns in rotation words , 2014, Theor. Comput. Sci..
[51] Masami Ito,et al. Context-Free Languages And Primitive Words , 2014 .
[52] Maxime Crochemore,et al. On the average number of regularities in a word , 2014, Theor. Comput. Sci..
[53] James D. Currie,et al. Abelian Complexity of Fixed Point of Morphism 0 ↦ 012, 1 ↦ 02, 2 ↦ 1 , 2014, Integers.
[54] Luca Q. Zamboni,et al. Infinite self-shuffling words , 2013, J. Comb. Theory A.
[55] Jeffrey Shallit,et al. Avoiding Three Consecutive Blocks of the Same Size and Same Sum , 2011, J. ACM.
[56] Gabriele Fici,et al. On The Maximum Number of Abelian Squares in a Word , 2014 .
[57] F. Blanchet-Sadri,et al. ABELIAN COMPLEXITY OF FIXED POINT OF MORPHISM , 2014 .
[58] Michel Rigo,et al. Another Generalization of Abelian Equivalence: Binomial Complexity of Infinite Words , 2013, WORDS.
[59] Francine Blanchet-Sadri,et al. On the Asymptotic Abelian Complexity of Morphic Words , 2013, Developments in Language Theory.
[60] Edita Pelantová,et al. Enumerating Abelian Returns to Prefixes of Sturmian Words , 2013, WORDS.
[61] Luca Q. Zamboni,et al. Abelian maximal pattern complexity of words , 2013, Ergodic Theory and Dynamical Systems.
[62] Juhani Karhumäki,et al. On a generalization of Abelian equivalence and complexity of infinite words , 2013, J. Comb. Theory, Ser. A.
[63] Narad Rampersad,et al. The abelian complexity of the paperfolding word , 2012, Discret. Math..
[64] Stepan Holub,et al. Abelian powers in paper-folding words , 2012, J. Comb. Theory, Ser. A.
[65] M. Rigo,et al. Some Properties of Abelian Return Words , 2013 .
[66] Juhani Karhumäki,et al. Problems in between words and abelian words: k-abelian avoidability , 2012, Theor. Comput. Sci..
[67] Juhani Karhumäki,et al. Fine and Wilf's Theorem for k-Abelian Periods , 2012, Int. J. Found. Comput. Sci..
[68] D. Henshall,et al. Shuffling and Unshuffling , 2011, Bull. EATCS.
[69] James D. Currie,et al. Fixed points avoiding Abelian k-powers , 2011, J. Comb. Theory, Ser. A.
[70] Michael Domaratzki,et al. Abelian Primitive Words , 2010, Int. J. Found. Comput. Sci..
[71] Sergey V. Avgustinovich,et al. On abelian versions of critical factorization theorem , 2012, RAIRO Theor. Informatics Appl..
[72] Arseny M. Shur,et al. On Abelian repetition threshold , 2012, RAIRO Theor. Informatics Appl..
[73] Michaël Rao,et al. Last cases of Dejean's conjecture , 2011, Theor. Comput. Sci..
[74] Gwénaël Richomme,et al. Avoiding Abelian Powers in Binary Words with Bounded Abelian Complexity , 2010, Int. J. Found. Comput. Sci..
[75] Narad Rampersad,et al. Recurrent words with constant Abelian complexity , 2009, Adv. Appl. Math..
[76] Gwénaël Richomme,et al. Abelian complexity of minimal subshifts , 2009, J. Lond. Math. Soc..
[77] James D. Currie,et al. A proof of Dejean's conjecture , 2009, Math. Comput..
[78] Luca Q. Zamboni,et al. Balance and Abelian complexity of the Tribonacci word , 2009, Adv. Appl. Math..
[79] Kalle Saari,et al. Everywhere alpha-repetitive sequences and Sturmian words , 2010, Eur. J. Comb..
[80] Veikko Keränen,et al. A powerful abelian square-free substitution over 4 letters , 2009, Theor. Comput. Sci..
[81] Aleksi Saarela,et al. Ultimately Constant Abelian Complexity of Infinite Words , 2009, J. Autom. Lang. Comb..
[82] Stepan Holub,et al. On highly palindromic words , 2009, Discret. Appl. Math..
[83] Jeffrey Shallit,et al. Counting Abelian Squares , 2008, Electron. J. Comb..
[84] Luca Q. Zamboni,et al. Palindromic richness , 2008, Eur. J. Comb..
[85] James D. Currie,et al. Least Periods of Factors of Infinite Words , 2009, RAIRO Theor. Informatics Appl..
[86] James D. Currie,et al. Long binary patterns are Abelian 2-avoidable , 2008, Theor. Comput. Sci..
[87] Jean Berstel,et al. Repetitions in words , 2008 .
[88] B. Marcus. Symbolic Dynamics , 2008, Encyclopedia of Complexity and Systems Science.
[89] Théodore Tapsoba,et al. Combinatoire de mots récurrents de complexité n+2 , 2007, RAIRO Theor. Informatics Appl..
[90] Jeffrey Shallit,et al. Every real number greater than 1 is a critical exponent , 2007, Theor. Comput. Sci..
[91] Lucian Ilie,et al. Fine and Wilf's Theorem for Abelian Periods , 2006, Bull. EATCS.
[92] Hui Rao,et al. Maximal pattern complexity of words over l letters , 2006, Eur. J. Comb..
[93] M. Lothaire,et al. Applied Combinatorics on Words , 2005 .
[94] Ethan M. Coven,et al. Sequences with minimal block growth , 2005, Mathematical systems theory.
[95] J. Allouche. Algebraic Combinatorics on Words , 2005 .
[96] Alfred J. van der Poorten,et al. Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..
[97] James D. Currie,et al. The Number of Ternary Words Avoiding Abelian Cubes Grows Exponentially , 2004 .
[98] James D. Currie,et al. The number of binary words avoiding abelian fourth powers grows exponentially , 2004, Theor. Comput. Sci..
[99] Tero Harju,et al. Combinatorics on Words , 2004 .
[100] Boris Adamczewski,et al. Balances for fixed points of primitive substitutions , 2003, Theor. Comput. Sci..
[101] Fabien Durand,et al. Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’ , 2003, Ergodic Theory and Dynamical Systems.
[102] Veikko Keränen,et al. New Abelian Square-Free DT0L-Languages over 4 Letters , 2003 .
[103] Luca Q. Zamboni,et al. Sequence entropy and the maximal pattern complexity of infinite words , 2002, Ergodic Theory and Dynamical Systems.
[104] Sergey V. Avgustinovich,et al. Words Avoiding Abelian Inclusions , 2001, J. Autom. Lang. Comb..
[105] David Damanik,et al. The Index of Sturmian Sequences , 2002, Eur. J. Comb..
[106] James D. Currie,et al. Avoiding Patterns in the Abelian Sense , 2001, Canadian Journal of Mathematics.
[107] Giuseppe Pirillo,et al. Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..
[108] Laurent Vuillon,et al. A Characterization of Sturmian Words by Return Words , 2001, Eur. J. Comb..
[109] Drew Vandeth,et al. Sturmian words and words with a critical exponent , 2000, Theor. Comput. Sci..
[110] Pascal Hubert,et al. Suites équilibrées , 2000, Theor. Comput. Sci..
[111] Aldo de Luca,et al. Special factors, periodicity, and an application to Sturmian words , 2000, Acta Informatica.
[112] Sébastien Ferenczi,et al. Imbalances in Arnoux-Rauzy sequences , 2000 .
[113] Lorenz Halbeisen,et al. AN APPLICATION OF VAN DER WAERDEN'S THEOREM IN ADDITIVE NUMBER THEORY , 2000 .
[114] James D. Currie,et al. Words Strongly Avoiding Fractional Powers , 1999, Eur. J. Comb..
[115] Gilles Didier,et al. Caractérisation des N-écritures et application à l'étude des suites de complexité ultimement n+cste , 1999, Theor. Comput. Sci..
[116] Antonio Restivo,et al. Periodicity and the Golden Ratio , 1998, Theor. Comput. Sci..
[117] Aviezri S. Fraenkel,et al. How Many Squares Can a String Contain? , 1998, J. Comb. Theory, Ser. A.
[118] Arturo Carpi,et al. On the Number of Abelian Square-free Words on Four Letters , 1998, Discret. Appl. Math..
[119] Sébastien Ferenczi,et al. Transcendence of Numbers with a Low Complexity Expansion , 1997 .
[120] Aldo de Luca,et al. Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..
[121] Douglas Lind,et al. An Introduction to Symbolic Dynamics and Coding , 1995 .
[122] Filippo Mignosi,et al. If a D0L Language is k-Power Free then it is Circular , 1993, ICALP.
[123] Arturo Carpi,et al. On Abelian Power-Free Morphisms , 1993, Int. J. Algebra Comput..
[124] Veikko Keränen,et al. Abelian Squares are Avoidable on 4 Letters , 1992, ICALP.
[125] Filippo Mignosi,et al. Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..
[126] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[127] Filippo Mignosi,et al. Infinite Words with Linear Subword Complexity , 1989, Theor. Comput. Sci..
[128] Jean Berstel,et al. Rational series and their languages , 1988, EATCS monographs on theoretical computer science.
[129] Jean-Jacques Pansiot,et al. Bornes inferieures sur la complexite des facteurs des mots infinis engendres par morphimes iteres , 1984, STACS.
[130] A. Zimin. BLOCKING SETS OF TERMS , 1984 .
[131] G. Rauzy. Suites à termes dans un alphabet fini , 1983 .
[132] Dwight R. Bean,et al. Avoidable patterns in strings of symbols , 1979 .
[133] F. Michel Dekking,et al. Strongly Non-Repetitive Sequences and Progression-Free Sets , 1979, J. Comb. Theory, Ser. A.
[134] L. Thomas Ramsey,et al. On certain sequences of lattice points. , 1979 .
[135] Andrzej Ehrenfeucht,et al. Periodicity and unbordered segments of words , 1979, Discret. Math..
[136] Maurice Pouzet,et al. Une caracterisation des mots periodiques , 1979, Discret. Math..
[137] R. C. ENTRINGER,et al. On Nonrepetitive Sequences , 1974, J. Comb. Theory, Ser. A.
[138] Ronald L. Graham,et al. Covering the Positive Integers by Disjoint Sets of the Form {[n alpha + beta]: n = 1, 2, ...} , 1973, J. Comb. Theory, Ser. A.
[139] Peter C. Chapin. Formal languages I , 1973, CSC '73.
[140] Françoise Dejean,et al. Sur un Théorème de Thue , 1972, J. Comb. Theory A.
[141] P. Pleasants. Non-repetitive sequences , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.
[142] Rohit Parikh,et al. On Context-Free Languages , 1966, JACM.
[143] H. Wilf,et al. Uniqueness theorems for periodic functions , 1965 .
[144] A. B. Cook. Some unsolved problems. , 1952, Hospital management.