Acetate-based ionic liquid engineering for efficient and stable CsPbI2Br perovskite solar cells with an unprecedented fill factor over 83%

[1]  C. Ballif,et al.  Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells , 2023, Science.

[2]  I. Sharp,et al.  Ionic Liquids Tailoring Crystal Orientation and Electronic Properties for Stable Perovskite Solar Cells , 2023, Nano Energy.

[3]  S. Kinge,et al.  Role of Ionic Liquids in Perovskite Solar Cells , 2023, Solar RRL.

[4]  Wenchao Zhang,et al.  Photo-induced structural and optical changes of CsPbBr3 perovskite nanocrystals in glasses , 2023, Chemical Engineering Journal.

[5]  Zhike Liu,et al.  21.15%‐Efficiency and Stable γ ‐CsPbI3 Perovskite Solar Cells Enabled by an Acyloin Ligand , 2023, Advanced materials.

[6]  Zhiteng Wang,et al.  Fluorine-Containing Passivation Layer via Surface Chelation for Inorganic Perovskite Solar Cells. , 2022, Angewandte Chemie.

[7]  Fan Zhang,et al.  Ionic Liquids for Efficient and Stable Perovskite Solar Cells , 2022, Advanced Materials Interfaces.

[8]  Xiaozheng Duan,et al.  Direct and stable α-phase formation via ionic liquid solvation for formamidinium-based perovskite solar cells , 2022, Joule.

[9]  Fuzhi Huang,et al.  Ionic Liquid Stabilized Perovskite Solar Modules with Power Conversion Efficiency Exceeding 20% , 2022, Advanced Functional Materials.

[10]  Hongqiang Wang,et al.  Dual bulk and interface engineering with ionic liquid for enhanced performance of ambient-processed inverted CsPbI3 perovskite solar cells , 2022, Journal of Materials Science & Technology.

[11]  X. Ren,et al.  Ionic Liquid Treatment for Highest‐Efficiency Ambient Printed Stable All‐Inorganic CsPbI3 Perovskite Solar Cells , 2021, Advanced materials.

[12]  Zhike Liu,et al.  Unraveling Passivation Mechanism of Imidazolium-Based Ionic Liquids on Inorganic Perovskite to Achieve Near-Record-Efficiency CsPbI2Br Solar Cells , 2021, Nano-Micro Letters.

[13]  A. Shalan,et al.  Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17 , 2021 .

[14]  T. Ma,et al.  Surface Management for Carbon‐Based CsPbI 2 Br Perovskite Solar Cell with 14% Power Conversion Efficiency , 2021, Solar RRL.

[15]  M. Akhtaruzzaman,et al.  The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics , 2021 .

[16]  Wei Huang,et al.  Ionic Liquids-Enabled Efficient and Stable Perovskite Photovoltaics: Progress and Challenges , 2021 .

[17]  Shurong Wang,et al.  Ionic liquid reducing energy loss and stabilizing CsPbI2Br solar cells , 2021 .

[18]  Xuanhua Li,et al.  Surface Modification with Ionic Liquid for Efficient CsPbI2Br Perovskite Solar Cells , 2021 .

[19]  Longwei Yin,et al.  Defect passivation strategies in perovskites for an enhanced photovoltaic performance , 2020 .

[20]  Shurong Wang,et al.  Ionic liquids engineering for high-efficiency and stable perovskite solar cells , 2020 .

[21]  S. Akin,et al.  Suppression of the interface-dependent nonradiative recombination by using 2-methylbenzimidazole as interlayer for highly efficient and stable perovskite solar cells , 2020 .

[22]  Long Ji,et al.  Vacancies substitution induced interfacial dipole formation and defect passivation for highly stable perovskite solar cells , 2020 .

[23]  S. Akin,et al.  FAPbI3‐Based Perovskite Solar Cells Employing Hexyl‐Based Ionic Liquid with an Efficiency Over 20% and Excellent Long‐Term Stability , 2020, Advanced Functional Materials.

[24]  Q. Gong,et al.  High‐Performance CsPbIxBr3‐x All‐Inorganic Perovskite Solar Cells with Efficiency over 18% via Spontaneous Interfacial Manipulation , 2020, Advanced Functional Materials.

[25]  Zhike Liu,et al.  Controlled n‐Doping in Air‐Stable CsPbI2Br Perovskite Solar Cells with a Record Efficiency of 16.79% , 2020, Advanced Functional Materials.

[26]  Zhike Liu,et al.  Europium and Acetate Co-doping Strategy for Developing Stable and Efficient CsPbI2 Br Perovskite Solar Cells. , 2019, Small.

[27]  Xue Zhou,et al.  Doping amino-functionalized ionic liquid in perovskite crystal for enhancing performances of hole-conductor free solar cells with carbon electrode , 2019, Chemical Engineering Journal.

[28]  M. Roeffaers,et al.  Thermal unequilibrium of strained black CsPbI3 thin films , 2019, Science.

[29]  Feng Gao,et al.  Planar perovskite solar cells with long-term stability using ionic liquid additives , 2019, Nature.

[30]  S. Seok,et al.  Intrinsic Instability of Inorganic–Organic Hybrid Halide Perovskite Materials , 2019, Advanced materials.

[31]  Q. Wang,et al.  NbF5: A Novel α‐Phase Stabilizer for FA‐Based Perovskite Solar Cells with High Efficiency , 2019, Advanced Functional Materials.

[32]  R. Schropp,et al.  Structurally Reconstructed CsPbI2Br Perovskite for Highly Stable and Square‐Centimeter All‐Inorganic Perovskite Solar Cells , 2018, Advanced Energy Materials.

[33]  G. Cao,et al.  Monolayer-like hybrid halide perovskite films prepared by additive engineering without antisolvents for solar cells , 2018 .

[34]  Liyuan Han,et al.  In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells , 2018, Advanced Energy Materials.

[35]  Kang L. Wang,et al.  Solar Cells: 3D–2D–0D Interface Profiling for Record Efficiency All‐Inorganic CsPbBrI2 Perovskite Solar Cells with Superior Stability (Adv. Energy Mater. 15/2018) , 2018 .

[36]  N. Jiang,et al.  Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells , 2017 .

[37]  Y. Qi,et al.  Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis , 2016 .

[38]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[39]  Jingtao Xu,et al.  Unification of the low-energy excitation peaks in the heat capacity that appears in clathrates , 2016 .

[40]  M. Erard,et al.  Adjusting the bandgap of CsPbBr3-yXy (X = Cl, I) for optimal interfacial charge transfer and enhanced photocatalytic hydrogen generation , 2023, Journal of Materials Chemistry A.

[41]  P. Yadav,et al.  The effect of B-site doping in all-inorganic CsPbIxBr3−x absorbers on the performance and stability of perovskite photovoltaics , 2023, Energy & Environmental Science.