Kinematic Design of Redundant Robotic Manipulators for Spatial Positioning that are Optimally Fault Tolerant

This work presents a method for identifying all the kinematic designs of spatial positioning manipulators that are optimally fault tolerant in a local sense. We use a common definition of fault tolerance, i.e., the post-failure Jacobian possesses the largest possible minimum singular value over all possible single locked-joint failures. The large family of physical manipulators that can achieve this optimally failure tolerant configuration is then parameterized and categorized. We develop a general computational technique to evaluate the resulting manipulators in terms of their global kinematic properties, with an emphasis on failure tolerance. Several manipulators with a range of desirable kinematic properties are presented and analyzed, with a specific example of optimizing over a given class of manipulators that possess a specified kinematic constraint.

[1]  Joseph R. Cavallaro,et al.  A dynamic fault tolerance framework for remote robots , 1995, IEEE Trans. Robotics Autom..

[2]  Antonella Ferrara,et al.  Fault Detection for Robot Manipulators via Second-Order Sliding Modes , 2008, IEEE Transactions on Industrial Electronics.

[3]  J. E. McInroy,et al.  Precise, fault-tolerant pointing using a Stewart platform , 1999 .

[4]  Rodney G. Roberts,et al.  Examples of spatial positioning redundant robotic manipulators that are optimally fault tolerant , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[5]  A. A. Maciejewski,et al.  Dexterity optimization of kinematically redundant manipulators in the presence of joint failures , 1994 .

[6]  John T. Chladek,et al.  Fault-tolerant joint development for the Space Shuttle remote manipulator system: analysis and experiment , 1993, IEEE Trans. Robotics Autom..

[7]  Anthony A. Maciejewski,et al.  AN ILLUSTRATION OF GENERATING ROBOTS FROM OPTIMAL FAULT-TOLERANT JACOBIANS , 2010 .

[8]  Peter I. Corke,et al.  A robotics toolbox for MATLAB , 1996, IEEE Robotics Autom. Mag..

[9]  Joseph R. Cavallaro,et al.  Fault residual generation via nonlinear analytical redundancy , 2005, IEEE Transactions on Control Systems Technology.

[10]  Leila Notash Joint sensor fault detection for fault tolerant parallel manipulators , 2000 .

[11]  Wan Kyun Chung,et al.  Failure recoverability by exploiting kinematic redundancy , 1996, Proceedings 5th IEEE International Workshop on Robot and Human Communication. RO-MAN'96 TSUKUBA.

[12]  Yixin Chen,et al.  Fault tolerance of parallel manipulators using task space and kinematic redundancy , 2006, IEEE Transactions on Robotics.

[13]  D. Tesar,et al.  Development and testing of a reliability performance index for modular robotic systems , 1994, Proceedings of Annual Reliability and Maintainability Symposium (RAMS).

[14]  M. Ji,et al.  Supervisory Fault Adaptive Control of a Mobile Robot and Its Application in Sensor-Fault Accommodation , 2007, IEEE Transactions on Robotics.

[15]  Anthony A. Maciejewski,et al.  On the existence of an optimally failure tolerant 7R manipulator Jacobian , 2007 .

[16]  Christiaan J. J. Paredis,et al.  Fault Tolerant Task Execution through Global Trajectory Planning , 1996 .

[17]  Charles A. Klein,et al.  Spatial Robotic Isotropy , 1991, Int. J. Robotics Res..

[18]  Anthony A. Maciejewski,et al.  Fault tolerance for kinematically redundant manipulators: anticipating free-swinging joint failures , 1998, IEEE Trans. Robotics Autom..

[19]  Anthony A. Maciejewski,et al.  Failure-tolerant path planning for kinematically redundant manipulators anticipating locked-joint failures , 2006, IEEE Transactions on Robotics.

[20]  Anthony A. Maciejewski,et al.  Failure Tolerance through Active Braking: A Kinematic Approach , 2001, Int. J. Robotics Res..

[21]  Sabri Tosunoglu,et al.  Kinematic and Structural Design Assessment of Fault-Tolerant Manipulators , 1998, Intell. Autom. Soft Comput..

[22]  Shimon Y. Nof,et al.  Error Detection and Prediction Algorithms: Application in Robotics , 2007, J. Intell. Robotic Syst..

[23]  Leila Notash,et al.  Optimizing fault tolerance to joint jam in the design of parallel robot manipulators , 2007 .

[24]  G. Visentin,et al.  TESTING SPACE ROBOTICS ON THE JAPANESE ETS-VII SATELLITE , 1999 .

[25]  Anthony A. Maciejewski,et al.  Fundamental Limitations on Designing Optimally Fault-Tolerant Redundant Manipulators , 2008, IEEE Transactions on Robotics.

[26]  W. H. McCulloch Safety Analysis Requirements for Robotic Systems in DOE Nuclear Facilities , 1996 .

[27]  Rodney G. Roberts On the local fault tolerance of a kinematically redundant manipulator , 1996, J. Field Robotics.

[28]  Jorge Angeles,et al.  Kinematic Isotropy and the Optimum Design of Parallel Manipulators , 1997, Int. J. Robotics Res..

[29]  Anthony A. Maciejewski,et al.  Fault tolerant operation of kinematically redundant manipulators for locked joint failures , 1997, IEEE Trans. Robotics Autom..

[30]  Balbir S. Dhillon,et al.  Robot systems reliability and safety: a review , 2002 .

[31]  Charles A. Klein,et al.  Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators , 1987 .

[32]  Mikko Siuko,et al.  Water hydraulic manipulator for fail safe and fault tolerant remote handling operations at ITER , 2009 .

[33]  Anthony A. Maciejewski Fault tolerant properties of kinematically redundant manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[34]  Ian D. Walker,et al.  Interval methods for fault-tree analysis in robotics , 2001, IEEE Trans. Reliab..

[35]  Alessandro De Luca,et al.  A modified newton-euler method for dynamic computations in robot fault detection and control , 2009, 2009 IEEE International Conference on Robotics and Automation.

[36]  M. Jamshidi,et al.  Robot manipulator control for hazardous waste-handling applications , 1992, J. Field Robotics.

[37]  Anthony A. Maciejewski,et al.  Real-time failure-tolerant control of kinematically redundant manipulators , 1999, IEEE Trans. Robotics Autom..

[38]  P. S. Babcock,et al.  Fault-tolerant design optimization: application to an autonomous underwater vehicle navigation system , 1990, Symposium on Autonomous Underwater Vehicle Technology.

[39]  John E. McInroy,et al.  Finding symmetric orthogonal Gough-Stewart platforms , 2006, IEEE Transactions on Robotics.

[40]  Somasundaram Kumanan,et al.  A hybrid fuzzy logicartificial neural network algorithm-based fault detection and isolation for industrial robot manipulators , 2007, Int. J. Manuf. Res..

[41]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[42]  Anthony A. Maciejewski,et al.  A local measure of fault tolerance for kinematically redundant manipulators , 1996, IEEE Trans. Robotics Autom..

[43]  Sabri Tosunoglu,et al.  Control algorithms for fault-tolerant robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[44]  Anthony A. Maciejewski,et al.  Examples of planar robot kinematic designs from optimally fault-tolerant Jacobians , 2011, 2011 IEEE International Conference on Robotics and Automation.

[45]  Christiaan J. J. Paredis,et al.  Designing Fault-Tolerant Manipulators: How Many Degrees of Freedom? , 1996, Int. J. Robotics Res..

[46]  Yixin Chen,et al.  Optimal, fault-tolerant mappings to achieve secondary goals without compromising primary performance , 2003, IEEE Trans. Robotics Autom..