On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes
暂无分享,去创建一个
James Hensman | Richard E. Turner | Zoubin Ghahramani | Alexander G. de G. Matthews | Zoubin Ghahramani | J. Hensman | A. G. Matthews
[1] Neil D. Lawrence,et al. Bayesian Gaussian Process Latent Variable Model , 2010, AISTATS.
[2] Matthias W. Seeger,et al. Bayesian Gaussian process models : PAC-Bayesian generalisation error bounds and sparse approximations , 2003 .
[3] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[4] Neil D. Lawrence,et al. Nested Variational Compression in Deep Gaussian Processes , 2014, 1412.1370.
[5] Mauricio A. Álvarez. Convolved Gaussian process priors for multivariate regression with applications to dynamical systems , 2011 .
[6] James Hensman,et al. Scalable Variational Gaussian Process Classification , 2014, AISTATS.
[7] Kian Ming Adam Chai,et al. Variational Multinomial Logit Gaussian Process , 2012, J. Mach. Learn. Res..
[8] Stephen J. Roberts,et al. Variational Inference for Gaussian Process Modulated Poisson Processes , 2014, ICML.
[9] R. Gray. Entropy and Information Theory , 1990, Springer New York.
[10] Neil D. Lawrence,et al. Variational Inference for Uncertainty on the Inputs of Gaussian Process Models , 2014, ArXiv.
[11] Michalis K. Titsias,et al. Variational Model Selection for Sparse Gaussian Process Regression , 2008 .
[12] Richard F. Bass. Kolmogorov extension theorem , 2011 .
[13] F. Y. Edgeworth,et al. The theory of statistics , 1996 .
[14] Aníbal R. Figueiras-Vidal,et al. Inter-domain Gaussian Processes for Sparse Inference using Inducing Features , 2009, NIPS.
[15] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[16] Neil D. Lawrence,et al. Computationally Efficient Convolved Multiple Output Gaussian Processes , 2011, J. Mach. Learn. Res..
[17] L. Csató. Gaussian processes:iterative sparse approximations , 2002 .
[18] Lehel Csató,et al. Sparse On-Line Gaussian Processes , 2002, Neural Computation.
[19] P. E. Kopp,et al. Measure, Integral and Probability , 1998 .
[20] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[21] Neil D. Lawrence,et al. Deep Gaussian Processes , 2012, AISTATS.
[22] B. Hunt. Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces , 1992, math/9210220.
[23] Neil D. Lawrence,et al. Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes , 2016, J. Mach. Learn. Res..
[24] Sheldon M. Ross,et al. Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.
[25] Matthias W. Seeger,et al. PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification , 2003, J. Mach. Learn. Res..
[26] J. Norris. Appendix: probability and measure , 1997 .