Quasi-regression with shrinkage

Quasi-regression is a method of Monte Carlo approximation useful for global sensitivity analysis. This paper presents a new version, incorporating shrinkage parameters of the type used in wavelet approximation. As an example application, a black box function from machine learning is analyzed. That function is nearly a sum of functions of one and two variables and the first variable acting alone accounts for more than half of the variance.

[1]  A. Owen A Central Limit Theorem for Latin Hypercube Sampling , 1992 .

[2]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[3]  A. Owen Assessing linearity in high dimensions , 1999 .

[4]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[5]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[6]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[7]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[8]  Klaus Ritter,et al.  Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.

[9]  C. Chui,et al.  A natural formulation of quasi-interpolation by multivariate splines , 1987 .

[10]  Phillip Ein-Dor,et al.  Attributes of the performance of central processing units: a relative performance prediction model , 1987, CACM.

[11]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[12]  I. Sobol,et al.  Sensitivity Measures, ANOVA-like Techniques and the Use of Bootstrap , 1997 .

[13]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[14]  A. Owen THE DIMENSION DISTRIBUTION AND QUADRATURE TEST FUNCTIONS , 2003 .

[15]  Henry P. Wynn,et al.  [Design and Analysis of Computer Experiments]: Rejoinder , 1989 .

[16]  Jian An,et al.  Quasi-regression , 2001, J. Complex..

[17]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[18]  Art B. Owen,et al.  9 Computer experiments , 1996, Design and analysis of experiments.

[19]  T. J. Mitchell,et al.  Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments , 1991 .

[20]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[21]  A. Owen,et al.  Quasi-Regression and the Relative Importance of the ANOVA Components of a Function , 2002 .

[22]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[23]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.