Random walk models of charge transfer and transport in dye sensitized systems
暂无分享,去创建一个
[1] Elliott W. Montroll,et al. Random Walks on Lattices. III. Calculation of First‐Passage Times with Application to Exciton Trapping on Photosynthetic Units , 1969 .
[2] L. Peter,et al. Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-Sensitized Nanocrystalline Photovoltaic Cells , 1999 .
[3] J. C. Phillips,et al. Stretched exponential relaxation in molecular and electronic glasses , 1996 .
[4] Kai Zhu,et al. Determining the locus for photocarrier recombination in dye-sensitized solar cells , 2002 .
[5] N. Mott,et al. Polarons in crystalline and non-crystalline materials , 2001 .
[6] G. Thornton,et al. First-principles study of potassium adsorption on TiO2 surfaces , 1999 .
[7] K. Wijayantha,et al. A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitised nanocrystalline solar cells , 2000 .
[8] Claude M. Penchina,et al. The physics of amorphous solids , 1983 .
[9] Nathan S. Lewis,et al. Electron Transfer Dynamics in Nanocrystalline Titanium Dioxide Solar Cells Sensitized with Ruthenium or Osmium Polypyridyl Complexes , 2001 .
[10] M. Grätzel. Photoelectrochemical cells : Materials for clean energy , 2001 .
[11] D. Vanmaekelbergh,et al. Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles. , 1996, Physical review letters.
[12] T. Kitamura,et al. Effects of Lithium Ion Density on Electron Transport in Nanoporous TiO2 Electrodes , 2001 .
[13] Michael F. Shlesinger,et al. Time‐Scale Invariance in Transport and Relaxation , 1991 .
[14] N. Harrison,et al. An ab initio Hartree-Fock study of the electron-excess gap states in oxygen-deficient rutile TiO2 , 1997 .
[15] J. Bisquert,et al. The trap-limited diffusivity of electrons in nanoporous semiconductor networks permeated with a conductive phase , 2003 .
[16] K. Wijayantha,et al. INTENSITY DEPENDENCE OF THE ELECTRON DIFFUSION LENGTH IN DYE-SENSITISED NANOCRYSTALLINE TIO2 PHOTOVOLTAIC CELLS , 1999 .
[17] Saif A. Haque,et al. Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films under Externally Applied Bias , 1998 .
[18] J. Moser,et al. Dynamics of interfacial charge-transfer reactions in semiconductor dispersions. Reduction of cobaltoceniumdicarboxylate in colloidal titania , 1985 .
[19] Fei Cao,et al. ELECTRON TRANSPORT IN POROUS NANOCRYSTALLINE TIO2 PHOTOELECTROCHEMICAL CELLS , 1996 .
[20] F. Willig,et al. Influence of trap filling on photocurrent transients in polycrystalline TiO2 , 1991 .
[21] G. Zumofen,et al. Random-walk studies of excitation trapping in crystals , 1982 .
[22] Jenny Nelson,et al. Electron Dynamics in Nanocrystalline ZnO and TiO2 Films Probed by Potential Step Chronoamperometry and Transient Absorption Spectroscopy , 2002 .
[23] C. Kelly,et al. Cation-Controlled Interfacial Charge Injection in Sensitized Nanocrystalline TiO2 , 1999 .
[24] J. Nelson,et al. Iodide Electron Transfer Kinetics in Dye-Sensitized Nanocrystalline TiO2 Films , 2002 .
[25] W. Göpel,et al. Surface defects of TiO2(110): A combined XPS, XAES AND ELS study , 1984 .
[26] A. Henglein,et al. Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal titanium dioxide , 1984 .
[27] Jenny Nelson,et al. Continuous-time random-walk model of electron transport in nanocrystalline TiO 2 electrodes , 1999 .
[28] Arthur J. Frank,et al. CHARGE RECOMBINATION IN DYE-SENSITIZED NANOCRYSTALLINE TIO2 SOLAR CELLS , 1997 .
[29] Anders Hagfeldt,et al. Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell , 1998 .
[30] T. Kitamura,et al. Influence of the electrolytes on electron transport in mesoporous TiO2-Electrolyte systems , 2002 .
[31] Arthur J. Frank,et al. Effect of the Surface-State Distribution on Electron Transport in Dye-Sensitized TiO2 Solar Cells: Nonlinear Electron-Transport Kinetics , 2000 .
[32] I. Mihalcescu,et al. Absence of Carrier Hopping in Porous Silicon , 1998 .
[33] M. Grätzel,et al. EPR observation of trapped electrons in colloidal titanium dioxide , 1985 .
[34] A. Walker,et al. Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells , 2003 .
[35] P. Searson,et al. Electrical and optical properties of porous nanocrystalline TiO2 films , 1995 .
[36] Anders Hagfeldt,et al. Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .
[37] K. Wijayantha,et al. Characterisation of electron transport and back reaction in dye-sensitised nanocrystalline solar cells by small amplitude laser pulse excitation , 2000 .
[38] F. Fabregat‐Santiago,et al. Modelling the electric potential distribution in the dark in nanoporous semiconductor electrodes , 1999 .
[39] Christoph J. Brabec,et al. Charge recombination in conjugated polymer/fullerene blended films studied by transient absorption spectroscopy , 2003 .
[40] Donald Fitzmaurice,et al. Optical electrochemistry I: steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode , 1991 .
[41] J. Nelson,et al. Photoconductivity and charge trapping in porous nanocrystalline titanium dioxide , 2002 .
[42] Adrian C. Fisher,et al. Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2000 .
[43] J. Klafter,et al. Target annihilation by random walkers , 1984 .
[44] A. J. Frank,et al. Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2003 .
[45] Noel W. Duffy,et al. Investigation of the Kinetics of the Back Reaction of Electrons with Tri-Iodide in Dye-Sensitized Nanocrystalline Photovoltaic Cells , 2000 .
[46] P. Hoyer,et al. Photocarrier transport in colloidal titanium dioxide films , 1993 .
[47] Henrik Lindström,et al. Electron Transport in the Nanostructured TiO2-Electrolyte System Studied with Time-Resolved Photocurrents , 1997 .
[48] Kurt D. Benkstein,et al. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .
[49] Arthur J. Frank,et al. Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling Studies , 2001 .
[50] A. Hagfeldt,et al. Electronic structure of electrochemically Li-inserted TiO2 studied with synchrotron radiation electron spectroscopies , 2003 .
[51] Emilio Palomares,et al. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. , 2003, Journal of the American Chemical Society.
[52] Donald Fitzmaurice,et al. Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films , 1992 .
[53] K. Rademann,et al. Electronic Energy Transfer on Fractals , 1984 .
[54] G. Boschloo,et al. Spectroelectrochemical Investigation of Surface States in Nanostructured TiO2 Electrodes , 1999 .
[55] E. Montroll,et al. Anomalous transit-time dispersion in amorphous solids , 1975 .
[56] Eric A. Schiff,et al. Ambipolar Diffusion of Photocarriers in Electrolyte-Filled, Nanoporous TiO2† , 2000 .
[57] A. Barzykin,et al. Mechanism of Charge Recombination in Dye-Sensitized Nanocrystalline Semiconductors: Random Flight Model , 2002 .
[58] Mohammad Khaja Nazeeruddin,et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .