Random walk models of charge transfer and transport in dye sensitized systems

Abstract Electron transport in porous, nanocrystalline metal oxide electrodes exhibits many features typical of dispersive transport in disordered semiconductors. This disorder can be attributed to energetic disorder in localized electron transport sites, or ‘trap’ sites. A numerical model based upon the continuous-time random walk (CTRW) is introduced to describe electron dynamics. The model is applied primarily to explain the stretched-exponential kinetic shape and strong bias dependence of optically observed recombination of electrons with photo-oxidized dye molecules, with the conclusion that recombination is limited by electron diffusion through a distribution of trap states. Analogous experimental and modelling studies of the functionally important back reaction between electrons in the metal oxide and oxidized species in the redox couple indicate that this recombination pathway is also dominated by trap-limited electron diffusion. The model predicts that such dispersive charge transport should be observed only on time scales shorter than the release time from the deepest trap, and this feature is used to explain the transition from fast, dispersive recombination kinetics slow and monoexponential behaviour in the presence of a slow (>10 ms) process limiting interfacial electron transfer. It is shown how transient optical measurements combined with modelling can be used as a probe of local electron dynamics, using inter-particle electron transport as an example. Finally, the application of random walk methods to simulation of device current–voltage characteristics is discussed.

[1]  Elliott W. Montroll,et al.  Random Walks on Lattices. III. Calculation of First‐Passage Times with Application to Exciton Trapping on Photosynthetic Units , 1969 .

[2]  L. Peter,et al.  Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-Sensitized Nanocrystalline Photovoltaic Cells , 1999 .

[3]  J. C. Phillips,et al.  Stretched exponential relaxation in molecular and electronic glasses , 1996 .

[4]  Kai Zhu,et al.  Determining the locus for photocarrier recombination in dye-sensitized solar cells , 2002 .

[5]  N. Mott,et al.  Polarons in crystalline and non-crystalline materials , 2001 .

[6]  G. Thornton,et al.  First-principles study of potassium adsorption on TiO2 surfaces , 1999 .

[7]  K. Wijayantha,et al.  A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitised nanocrystalline solar cells , 2000 .

[8]  Claude M. Penchina,et al.  The physics of amorphous solids , 1983 .

[9]  Nathan S. Lewis,et al.  Electron Transfer Dynamics in Nanocrystalline Titanium Dioxide Solar Cells Sensitized with Ruthenium or Osmium Polypyridyl Complexes , 2001 .

[10]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[11]  D. Vanmaekelbergh,et al.  Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles. , 1996, Physical review letters.

[12]  T. Kitamura,et al.  Effects of Lithium Ion Density on Electron Transport in Nanoporous TiO2 Electrodes , 2001 .

[13]  Michael F. Shlesinger,et al.  Time‐Scale Invariance in Transport and Relaxation , 1991 .

[14]  N. Harrison,et al.  An ab initio Hartree-Fock study of the electron-excess gap states in oxygen-deficient rutile TiO2 , 1997 .

[15]  J. Bisquert,et al.  The trap-limited diffusivity of electrons in nanoporous semiconductor networks permeated with a conductive phase , 2003 .

[16]  K. Wijayantha,et al.  INTENSITY DEPENDENCE OF THE ELECTRON DIFFUSION LENGTH IN DYE-SENSITISED NANOCRYSTALLINE TIO2 PHOTOVOLTAIC CELLS , 1999 .

[17]  Saif A. Haque,et al.  Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films under Externally Applied Bias , 1998 .

[18]  J. Moser,et al.  Dynamics of interfacial charge-transfer reactions in semiconductor dispersions. Reduction of cobaltoceniumdicarboxylate in colloidal titania , 1985 .

[19]  Fei Cao,et al.  ELECTRON TRANSPORT IN POROUS NANOCRYSTALLINE TIO2 PHOTOELECTROCHEMICAL CELLS , 1996 .

[20]  F. Willig,et al.  Influence of trap filling on photocurrent transients in polycrystalline TiO2 , 1991 .

[21]  G. Zumofen,et al.  Random-walk studies of excitation trapping in crystals , 1982 .

[22]  Jenny Nelson,et al.  Electron Dynamics in Nanocrystalline ZnO and TiO2 Films Probed by Potential Step Chronoamperometry and Transient Absorption Spectroscopy , 2002 .

[23]  C. Kelly,et al.  Cation-Controlled Interfacial Charge Injection in Sensitized Nanocrystalline TiO2 , 1999 .

[24]  J. Nelson,et al.  Iodide Electron Transfer Kinetics in Dye-Sensitized Nanocrystalline TiO2 Films , 2002 .

[25]  W. Göpel,et al.  Surface defects of TiO2(110): A combined XPS, XAES AND ELS study , 1984 .

[26]  A. Henglein,et al.  Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal titanium dioxide , 1984 .

[27]  Jenny Nelson,et al.  Continuous-time random-walk model of electron transport in nanocrystalline TiO 2 electrodes , 1999 .

[28]  Arthur J. Frank,et al.  CHARGE RECOMBINATION IN DYE-SENSITIZED NANOCRYSTALLINE TIO2 SOLAR CELLS , 1997 .

[29]  Anders Hagfeldt,et al.  Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell , 1998 .

[30]  T. Kitamura,et al.  Influence of the electrolytes on electron transport in mesoporous TiO2-Electrolyte systems , 2002 .

[31]  Arthur J. Frank,et al.  Effect of the Surface-State Distribution on Electron Transport in Dye-Sensitized TiO2 Solar Cells: Nonlinear Electron-Transport Kinetics , 2000 .

[32]  I. Mihalcescu,et al.  Absence of Carrier Hopping in Porous Silicon , 1998 .

[33]  M. Grätzel,et al.  EPR observation of trapped electrons in colloidal titanium dioxide , 1985 .

[34]  A. Walker,et al.  Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells , 2003 .

[35]  P. Searson,et al.  Electrical and optical properties of porous nanocrystalline TiO2 films , 1995 .

[36]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[37]  K. Wijayantha,et al.  Characterisation of electron transport and back reaction in dye-sensitised nanocrystalline solar cells by small amplitude laser pulse excitation , 2000 .

[38]  F. Fabregat‐Santiago,et al.  Modelling the electric potential distribution in the dark in nanoporous semiconductor electrodes , 1999 .

[39]  Christoph J. Brabec,et al.  Charge recombination in conjugated polymer/fullerene blended films studied by transient absorption spectroscopy , 2003 .

[40]  Donald Fitzmaurice,et al.  Optical electrochemistry I: steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode , 1991 .

[41]  J. Nelson,et al.  Photoconductivity and charge trapping in porous nanocrystalline titanium dioxide , 2002 .

[42]  Adrian C. Fisher,et al.  Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2000 .

[43]  J. Klafter,et al.  Target annihilation by random walkers , 1984 .

[44]  A. J. Frank,et al.  Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2003 .

[45]  Noel W. Duffy,et al.  Investigation of the Kinetics of the Back Reaction of Electrons with Tri-Iodide in Dye-Sensitized Nanocrystalline Photovoltaic Cells , 2000 .

[46]  P. Hoyer,et al.  Photocarrier transport in colloidal titanium dioxide films , 1993 .

[47]  Henrik Lindström,et al.  Electron Transport in the Nanostructured TiO2-Electrolyte System Studied with Time-Resolved Photocurrents , 1997 .

[48]  Kurt D. Benkstein,et al.  Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .

[49]  Arthur J. Frank,et al.  Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling Studies , 2001 .

[50]  A. Hagfeldt,et al.  Electronic structure of electrochemically Li-inserted TiO2 studied with synchrotron radiation electron spectroscopies , 2003 .

[51]  Emilio Palomares,et al.  Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. , 2003, Journal of the American Chemical Society.

[52]  Donald Fitzmaurice,et al.  Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films , 1992 .

[53]  K. Rademann,et al.  Electronic Energy Transfer on Fractals , 1984 .

[54]  G. Boschloo,et al.  Spectroelectrochemical Investigation of Surface States in Nanostructured TiO2 Electrodes , 1999 .

[55]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[56]  Eric A. Schiff,et al.  Ambipolar Diffusion of Photocarriers in Electrolyte-Filled, Nanoporous TiO2† , 2000 .

[57]  A. Barzykin,et al.  Mechanism of Charge Recombination in Dye-Sensitized Nanocrystalline Semiconductors: Random Flight Model , 2002 .

[58]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .