Maximum Likelihood Estimation of the Multivariate Normal Mixture Model

The Hessian of the multivariate normal mixture model is derived, and estimators of the information matrix are obtained, thus enabling consistent estimation of all parameters and their precisions. The usefulness of the new theory is illustrated with two examples and some simulation experiments. The newly proposed estimators appear to be superior to the existing ones.

[1]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[2]  J. Behboodian Information matrix for a mixture of two normal distributions , 1972 .

[3]  Michael I. Jordan,et al.  On Convergence Properties of the EM Algorithm for Gaussian Mixtures , 1996, Neural Computation.

[4]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[5]  J. MacKinnon,et al.  Econometric Theory and Methods , 2003 .

[6]  J. Horowitz Bootstrap-based critical values for the information matrix test , 1994 .

[7]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[8]  Dankmar Böhning,et al.  Statistical Inference Based on a General Model of Unobserved Heterogeneity , 1995 .

[9]  N. E. Day Estimating the components of a mixture of normal distributions , 1969 .

[10]  J. Habbema A stepwise discriminant analysis program using density estimetion , 1974 .

[11]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[12]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[13]  D. Rubin,et al.  Estimation and Hypothesis Testing in Finite Mixture Models , 1985 .

[14]  K. Pearson Contributions to the Mathematical Theory of Evolution , 1894 .

[15]  Geoffrey J. McLachlan,et al.  Standard errors of fitted component means of normal mixtures , 1997 .

[16]  Peter Adams,et al.  The EMMIX software for the fitting of mixtures of normal and t-components , 1999 .

[17]  Andrew Chesher,et al.  The information matrix test: Simplified calculation via a score test interpretation , 1983 .

[18]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[19]  R. Hathaway A Constrained Formulation of Maximum-Likelihood Estimation for Normal Mixture Distributions , 1985 .

[20]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[21]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[22]  S. Newcomb A Generalized Theory of the Combination of Observations so as to Obtain the Best Result , 1886 .

[23]  Stephen M. Stigler The History of Statistics: The Measurement of Uncertainty before 1900 , 1986 .

[24]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[25]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[26]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[27]  Saralees Nadarajah,et al.  Information matrices for normal and Laplace mixtures , 2007, Inf. Sci..

[28]  S. Stigler,et al.  The History of Statistics: The Measurement of Uncertainty before 1900 , 1986 .

[29]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[30]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[31]  Chuanhai Liu,et al.  Information matrix computation from conditional information via normal approximation , 1998 .

[32]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[33]  Tony Lancaster,et al.  THE COVARIANCE MATRIX OF THE INFORMATION MATRIX TEST , 1984 .