Logistic regression for clustered data from environmental monitoring programs
暂无分享,去创建一个
M. Ekströma | P.-A. Esseenb | B. Westerlundc | A. Grafströmc | B. G. Jonssond | G. Ståhlc | M. Ekströma | P.-A. Esseenb | B. Westerlundc | A. Grafströmc | G. Ståhlc
[1] D. Pfeffermann. The Role of Sampling Weights when Modeling Survey Data , 1993 .
[2] Sharon L. Lohr,et al. A comparison of weighted and unweighted analyses in the national Crime Victimization Survey , 1994 .
[3] David B. Lindenmayer,et al. The science and application of ecological monitoring , 2010 .
[4] J. Brunet,et al. Trait variations of ground flora species disentangle the effects of global change and altered land‐use in Swedish forests during 20 years , 2016, Global change biology.
[5] Danny Pfeffermann,et al. Inference under informative sampling , 2009 .
[6] S. Rabe-Hesketh,et al. Multilevel modelling of complex survey data , 2006 .
[7] L. Held,et al. Marginal or conditional regression models for correlated non‐normal data? , 2016 .
[8] C. Ellis. Lichen epiphyte diversity: A species, community and trait-based review , 2012 .
[9] Göran Ståhl,et al. Adapting National Forest Inventories to changing requirements - the case of the Swedish National Forest Inventory at the turn of the 20th century , 2014 .
[10] E L Korn,et al. Epidemiologic studies utilizing surveys: accounting for the sampling design. , 1991, American journal of public health.
[11] Alan Agresti,et al. Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.
[12] Tihomir Asparouhov,et al. General Multi-Level Modeling with Sampling Weights , 2006 .
[13] J. Hardin,et al. Generalized Estimating Equations , 2002 .
[14] J. Fieberg,et al. Regression modelling of correlated data in ecology: subject‐specific and population averaged response patterns , 2009 .
[16] John A. Nelder,et al. Conditional and Marginal Models: Another View , 2004 .
[17] Edward L. Korn,et al. Examples of Differing Weighted and Unweighted Estimates from a Sample Survey , 1995 .
[18] P. Heagerty,et al. Misspecified maximum likelihood estimates and generalised linear mixed models , 2001 .
[19] S. Zeger,et al. Longitudinal data analysis using generalized linear models , 1986 .
[20] G. Ståhl,et al. Broad-scale distribution of epiphytic hair lichens correlates more with climate and nitrogen deposition than with forest structure , 2016 .
[21] Jeffrey R. Wilson,et al. Modeling Binary Correlated Responses using SAS, SPSS and R , 2015 .
[22] Debajyoti Sinha,et al. One-Step Generalized Estimating Equations With Large Cluster Sizes , 2017, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[23] R. O’Hara,et al. Quantifying Habitat Requirements of Tree‐Living Species in Fragmented Boreal Forests with Bayesian Methods , 2009, Conservation biology : the journal of the Society for Conservation Biology.
[24] D. Bates,et al. Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.
[25] F B Hu,et al. Comparison of population-averaged and subject-specific approaches for analyzing repeated binary outcomes. , 1998, American journal of epidemiology.
[26] P. Albert,et al. Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.
[27] Andrea Rotnitzky,et al. Regression Models for Discrete Longitudinal Responses , 1993 .
[28] Søren Højsgaard,et al. The R Package geepack for Generalized Estimating Equations , 2005 .
[29] Jerome P. Reiter,et al. Analytical Modeling in Complex Surveys of Work Practices , 2005 .
[30] Patricia A. Berglund,et al. Applied Survey Data Analysis , 2010 .