Boson peak in ultrathin alumina layers investigated with neutron spectroscopy

This paper shows that atomic motions in ultra-thin alumina glass result in a characteristic peak in the vibrational density-of-states at 2.8 meV. The boson peak frequency measured by neutron spectroscopy is in agreement with the values calculated from molecular dynamics simulations. Confinement within the nanometer-thick layer shifts the boson peak frequency.

[1]  J. S. Smith,et al.  Effect of atomic structure on the electrical response of aluminum oxide tunnel junctions , 2019, Physical Review Research.

[2]  Yun Liu,et al.  Spin-wave propagation in α-Fe2O3 nanorods: the effect of confinement and disorder , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  J. Garden,et al.  Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses , 2018, Scientific Reports.

[4]  Clemens Müller,et al.  Towards understanding two-level-systems in amorphous solids: insights from quantum circuits , 2017, Reports on progress in physics. Physical Society.

[5]  S. Psakhie,et al.  Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen , 2016 .

[6]  M. Luisier,et al.  Soft surfaces of nanomaterials enable strong phonon interactions , 2016, Nature.

[7]  A. Podlesnyak,et al.  Boson peak in deeply cooled confined water: a possible way to explore the existence of the liquid-to-liquid transition in water. , 2015, Physical review letters.

[8]  Fan Zhang,et al.  The thickness of native oxides on aluminum alloys and single crystals , 2015 .

[9]  Luke Gordon,et al.  Hydrogen bonds in Al2O3 as dissipative two-level systems in superconducting qubits , 2014, Scientific Reports.

[10]  Á. Rubio,et al.  Identification of structural motifs as tunneling two-level systems in amorphous alumina at low temperatures , 2014, 1411.0529.

[11]  Caroline S. Gorham,et al.  Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al2O3) , 2014 .

[12]  Yu Dehong,et al.  Pelican — a Time of Flight Cold Neutron Polarization Analysis Spectrometer at OPAL , 2013 .

[13]  S. Sen,et al.  Amorphous Alumina Nanoparticles: Structure, Surface Energy, and Thermodynamic Phase Stability , 2013 .

[14]  G. Falci,et al.  1 / f noise: Implications for solid-state quantum information , 2013, 1304.7925.

[15]  C. Musgrave,et al.  Bulk and surface tunneling hydrogen defects in alumina. , 2013, Physical review letters.

[16]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[17]  R. Birgeneau,et al.  Lifetimes of antiferromagnetic magnons in two and three dimensions: experiment, theory, and numerics. , 2013, Physical review letters.

[18]  Konrad Hinsen,et al.  nMoldyn 3: Using task farming for a parallel spectroscopy‐oriented analysis of molecular dynamics simulations , 2012, J. Comput. Chem..

[19]  S. Davis,et al.  Structural, elastic, vibrational and electronic properties of amorphous Al2O3 from ab initio calculations , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  T. Chatterji,et al.  Antiferromagnetic spin correlations in MnO nanoparticles , 2010 .

[21]  R. Zorn Boson peak in confined disordered systems , 2010 .

[22]  Chi Won Ahn,et al.  Structure of amorphous aluminum oxide. , 2009, Physical review letters.

[23]  D. Murray,et al.  Inelastic neutron scattering due to acoustic vibrations confined in nanoparticles: Theory and experiment , 2008, 0811.3285.

[24]  W. Ching,et al.  Ab initiostudy of the physical properties ofγ-Al2O3: Lattice dynamics, bulk properties, electronic structure, bonding, optical properties, and ELNES/XANES spectra , 2008 .

[25]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[26]  E. .. Mittemeijer,et al.  Amorphous versus crystalline state for ultrathin Al2O3 overgrowths on Al substrates , 2008 .

[27]  E. Søndergård,et al.  Anomalous phonon behavior: blueshift of the surface boson peak in silica glass with increasing temperature. , 2008, Physical review letters.

[28]  V. Shumeiko,et al.  Quantum bits with Josephson junctions (Review Article) , 2007 .

[29]  E. Søndergård,et al.  Observation of the boson peak at the surface of vitreous silica. , 2007, Physical review letters.

[30]  R. Fagaly Superconducting quantum interference device instruments and applications , 2006 .

[31]  A. Lu,et al.  High surface area, mesoporous, glassy alumina with a controllable pore size by nanocasting from carbon aerogels. , 2005, Chemistry.

[32]  O. Delaire,et al.  Vibrations of micro-eV energies in nanocrystalline microstructures. , 2004, Physical review letters.

[33]  H. Klauk,et al.  Poisson's ratio and the fragility of glass-forming liquids , 2004, Nature.

[34]  John M. Martinis,et al.  Implementing Qubits with Superconducting Integrated Circuits , 2004, Quantum Inf. Process..

[35]  T. Nakayama Boson peak and terahertz frequency dynamics of vitreous silica , 2002 .

[36]  Gonzalo Gutiérrez,et al.  Molecular dynamics study of structural properties of amorphous Al 2 O 3 , 2002 .

[37]  D. Strauch,et al.  Ab initio lattice dynamics of sapphire , 2000 .

[38]  S. Ogata,et al.  Parallel molecular dynamics simulations for the oxidation of an aluminium nanocluster , 1998 .

[39]  C. C. Ahn,et al.  Phonons in Nanocrystalline {sup 57}Fe , 1997 .

[40]  P. Lamparter,et al.  Structure of amorphous Al2O3 , 1997 .

[41]  Mark Harris,et al.  Floppy modes in crystalline and amorphous silicates , 1997 .

[42]  F. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994, Physical review. B, Condensed matter.

[43]  L. Börjesson,et al.  The boson peak in glass formers of increasing fragility , 1994 .

[44]  W. Phillips Two-level states in glasses , 1987 .

[45]  K. Binder,et al.  Glassy Materials and Disordered Solids: AN Introduction to Their Statistical Mechanics (revised Edition) , 2011 .

[46]  A. Burin,et al.  Glassy Materials and Disordered Solids , 2006 .

[47]  M. A. Morales,et al.  Orientational Glasses , 2005 .

[48]  F. Tichelaar,et al.  Thermodynamic stability of amorphous oxide films on metals: Application to aluminum oxide films on aluminum substrates , 2000 .

[49]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[50]  C. C. Ahn,et al.  Phonons in Nanocrystalline 57 Fe , 1997 .

[51]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .