miRNAs: their discovery, biogenesis and mechanism of action.

The field of miRNA research is evolving at a very fast pace. Since their discovery almost 20years ago, miRNAs have proven to be of tremendous importance to normal physiological homeostasis as well as to the pathogenesis of major diseases such as cancer. Recent advances describe a key contribution for miRNAs in a wide variety of cellular processes ranging from embryonic development, cell proliferation and apoptosis to prominent roles in disease progression. miRNAs are now of central interest to biomedical research. Here we provide an overview of their discovery, biogenesis and mechanism of action.

[1]  E. Izaurralde,et al.  Getting to the Root of miRNA-Mediated Gene Silencing , 2008, Cell.

[2]  Michael T. McManus,et al.  MicroRNAs and endocrine biology. , 2005, The Journal of endocrinology.

[3]  V. Kim MicroRNA biogenesis: coordinated cropping and dicing , 2005, Nature Reviews Molecular Cell Biology.

[4]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[5]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[6]  Eric C. Lai,et al.  Biological principles of microRNA-mediated regulation: shared themes amid diversity , 2008, Nature Reviews Genetics.

[7]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[8]  A. Hatzigeorgiou,et al.  A guide through present computational approaches for the identification of mammalian microRNA targets , 2006, Nature Methods.

[9]  V. Ambros,et al.  Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation , 2004, Genome Biology.

[10]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[11]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[12]  E. Kroh,et al.  Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma , 2011, Proceedings of the National Academy of Sciences.

[13]  Eun-Young Choi,et al.  The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. , 2004, Genes & development.

[14]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[15]  B. Cullen,et al.  Sequence requirements for micro RNA processing and function in human cells. , 2003, RNA.

[16]  A. Harris,et al.  Detection of elevated levels of tumour‐associated microRNAs in serum of patients with diffuse large B‐cell lymphoma , 2008, British journal of haematology.

[17]  D. Marks,et al.  The small RNA profile during Drosophila melanogaster development. , 2003, Developmental cell.

[18]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[19]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[20]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[21]  Ioannis S Vlachos,et al.  Online resources for miRNA analysis. , 2013, Clinical biochemistry.

[22]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[23]  Q. Cui,et al.  An Analysis of Human MicroRNA and Disease Associations , 2008, PloS one.

[24]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[25]  G. Calin,et al.  MicroRNAs in body fluids—the mix of hormones and biomarkers , 2011, Nature Reviews Clinical Oncology.

[26]  Vincent De Guire,et al.  An E2F/miR-20a Autoregulatory Feedback Loop* , 2007, Journal of Biological Chemistry.

[27]  K. Vickers,et al.  MicroRNAs are Transported in Plasma and Delivered to Recipient Cells by High-Density Lipoproteins , 2011, Nature Cell Biology.

[28]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[29]  John P A Ioannidis,et al.  Clinical outcome prediction by microRNAs in human cancer: a systematic review. , 2012, Journal of the National Cancer Institute.

[30]  Maxime Caron,et al.  Designing small multiple-target artificial RNAs , 2010, Nucleic acids research.

[31]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[32]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[33]  Jessica A. Weber,et al.  The microRNA spectrum in 12 body fluids. , 2010, Clinical chemistry.

[34]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[35]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[36]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[37]  A. Rougvie,et al.  The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. , 2003, Developmental cell.

[38]  Wei Yan,et al.  Tissue-dependent paired expression of miRNAs , 2007, Nucleic acids research.

[39]  K. Drescher,et al.  Exosomal miRNAs: Biological Properties and Therapeutic Potential , 2012, Front. Gene..

[40]  H. Horvitz,et al.  Heterochronic mutants of the nematode Caenorhabditis elegans. , 1984, Science.

[41]  C. Théry Exosomes: secreted vesicles and intercellular communications , 2011, F1000 biology reports.

[42]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[43]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[44]  Eugene Berezikov,et al.  Mammalian mirtron genes. , 2007, Molecular cell.

[45]  B. Bruneau Developmental biology: Tiny brakes for a growing heart , 2005, Nature.

[46]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[47]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[48]  Anton J. Enright,et al.  Genomic analysis of human microRNA transcripts , 2007, Proceedings of the National Academy of Sciences.

[49]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[50]  R. Robitaille,et al.  Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges. , 2013, Clinical biochemistry.

[51]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[52]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[53]  R. Quigg,et al.  miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130 , 2008, Proceedings of the National Academy of Sciences.

[54]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[55]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[56]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.