The Effect of Radiometric Correction on Multicamera Algorithms

We present results confirming the importance of radiometric correction in multicamera applications. Although, we compensate for systematic noise only, we review all noise sources in the video sensor (systematic and random). We use a simple model for radiometric correction of digital images. The correction procedure is tested on the disparity map computation in stereo matching, particularly in a case where stereo usually fails -almost textureless white surface. Without correcting radiometricly, the matching algorithm matches systematic noise components in the two images. With the correction, after removing the systematic noise, an improvement of 26% to 59% in relative rms of the disparity map is demonstrated (the higher the intensity of the flat field, the better the improvement). Comments University of Pennsylvania Department of Computer and Information Science Technical Report No. MSCIS-97-21. This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/202 The Effect of Radiometric Correction on Multicamera Algorithms MS-CIS-97-21 (GRASP LAB 418) Gerda Kamberova, Ruzena Bajcsy University of Pennsylvania School of Engineering and Applied Science Computer and Information Science Department Philadelphia, PA 19104-6389 The Effect of Radiometric Correction on Multicamera Algorithms Gerda Kamberova and Ruzena Bajcsy E-mail: karnberov@cis.upenn.edu, bajcs yQcis. upenn. edu Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104

[1]  D. J. Burt,et al.  Charge-coupled devices and their applications , 1975 .

[2]  Hans P. Moravec Robot Rover Visual Navigation , 1981 .

[3]  Robert M. Haralick,et al.  Performance Characterization in Computer Vision , 1993, BMVC.

[4]  A. Theuwissen,et al.  Solid-State Imaging with Charge-Coupled Devices , 1995 .

[5]  Y. Beers Introduction to the theory of error , 1953 .

[6]  C. Helstrom,et al.  Compensation for readout noise in CCD images , 1995 .

[7]  T. Poggio,et al.  A generalized ordering constraint for stereo correspondence , 1984 .

[8]  A. Sripad,et al.  A necessary and sufficient condition for quantization errors to be uniform and white , 1977 .

[9]  Morley M. Blouke,et al.  The Future Scientific CCD , 1984, Optics & Photonics.

[10]  Horst A. Beyer Linejitter and geometric calibration of CCD-cameras , 1990 .

[11]  Charles A. Poynton,et al.  A technical introduction to digital video , 1996 .

[12]  H. Beyer Geometric and radiometric analysis of a CCD-camera based photogrammetric close-range system , 1992 .

[13]  Glenn Healey,et al.  Radiometric CCD camera calibration and noise estimation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  D. R. Lamb,et al.  Charge-coupled devices and their applications , 1980 .

[15]  Keith Price,et al.  Anything you can do, I can do better (No you can't) , 1986, Comput. Vis. Graph. Image Process..

[16]  Roger Y. Tsai,et al.  Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrology , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[17]  Roger Y. Tsai,et al.  Techniques for Calibration of the Scale Factor and Image Center for High Accuracy 3-D Machine Vision Metrology , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  W. F. orstner Pros and Cons Against Performance Characterization of Vision Algorithms , 1996 .

[19]  Max Mintz,et al.  A confidence set approach to mobile robot localization , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[20]  Ian S. McLean,et al.  Electronic and Computer-Aided Astronomy: From Eyes to Electronic Sensors , 1989 .

[21]  Max Mintz,et al.  Minimax rules under zero–one loss for a restricted location parameter , 1999 .

[22]  Gerald C. Holst,et al.  CCD arrays, cameras, and displays , 1996 .