Conversion of an Extracellular Dpp/BMP Morphogen Gradient into an Inverse Transcriptional Gradient

Morphogen gradients control body pattern by differentially regulating cellular behavior. Here, we analyze the molecular events underlying the primary response to the Dpp/BMP morphogen in Drosophila. Throughout development, Dpp transduction causes the graded transcriptional downregulation of the brinker (brk) gene. We first provide significance for the brk expression gradient by showing that different Brk levels repress distinct combinations of wing genes expressed at different distances from Dpp-secreting cells. We then dissect the brk regulatory region and identify two separable elements with opposite properties, a constitutive enhancer and a Dpp morphogen-regulated silencer. Furthermore, we present genetic and biochemical evidence that the brk silencer serves as a direct target for a protein complex consisting of the Smad homologs Mad/Medea and the zinc finger protein Schnurri. Together, our results provide the molecular framework for a mechanism by which the extracellular Dpp/BMP morphogen establishes a finely tuned, graded read-out of transcriptional repression.

[1]  J. Massagué,et al.  Transcriptional control by the TGF‐β/Smad signaling system , 2000 .

[2]  Kirby D. Johnson,et al.  Repression of Dpp Targets by Binding of Brinker to Mad Sites* , 2001, The Journal of Biological Chemistry.

[3]  Michael Levine,et al.  Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen , 1993, Cell.

[4]  G. Campbell,et al.  Transducing the Dpp Morphogen Gradient in the Wing of Drosophila Regulation of Dpp Targets by brinker , 1999, Cell.

[5]  E. Wieschaus,et al.  The Drosophila Gene brinker Reveals a Novel Mechanism of Dpp Target Gene Regulation , 1999, Cell.

[6]  Z. Paroush,et al.  Brinker requires two corepressors for maximal and versatile repression in Dpp signalling , 2001, The EMBO journal.

[7]  M. Cohen TGF beta/Smad signaling system and its pathologic correlates. , 2003, American journal of medical genetics. Part A.

[8]  L. Ségalat,et al.  Dissection of the Drosophila pourquoi-pas? promoter: Complex ovarian expression is driven by distinct follicle cell- and germ line-specific enhancers , 1994, Mechanisms of Development.

[9]  K. Basler,et al.  The repressor and activator forms of Cubitus interruptus control Hedgehog target genes through common generic gli-binding sites. , 2000, Development.

[10]  K. Struhl,et al.  The gradient morphogen bicoid is a concentration-dependent transcriptional activator , 1989, Cell.

[11]  J. Wrana,et al.  Signal transduction by the TGF-beta superfamily. , 2002, Science.

[12]  J. Hudson,et al.  The Drosophila Medea gene is required downstream of dpp and encodes a functional homolog of human Smad4. , 1998, Development.

[13]  K. Anderson,et al.  decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo , 1992, Cell.

[14]  M. Affolter,et al.  Schnurri mediates Dpp-dependent repression of brinker transcription , 2000, Nature Cell Biology.

[15]  T. Jessell,et al.  The specification of dorsal cell fates in the vertebrate central nervous system. , 1999, Annual review of neuroscience.

[16]  Tetsuya Tabata,et al.  Genetics of morphogen gradients , 2001, Nature Reviews Genetics.

[17]  Jeffrey L. Wrana,et al.  Signal Transduction by the TGF-β Superfamily , 2002, Science.

[18]  E. L. Ferguson,et al.  Morphogen gradients: new insights from DPP. , 1999, Trends in genetics : TIG.

[19]  G. Struhl,et al.  Direct and Long-Range Action of a DPP Morphogen Gradient , 1996, Cell.

[20]  J. Gurdon,et al.  Morphogen gradient interpretation , 2001, Nature.

[21]  T. Tabata,et al.  Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. , 2000, Molecular cell.

[22]  T. Kornberg,et al.  Cytonemes Cellular Processes that Project to the Principal Signaling Center in Drosophila Imaginal Discs , 1999, Cell.

[23]  Akira Kato,et al.  Ventroptin: A BMP-4 Antagonist Expressed in a Double-Gradient Pattern in the Retina , 2001, Science.

[24]  M. O’Connor,et al.  The drosophila schnurri gene acts in the Dpp/TGFβ signaling pathway and encodes a transcription factor homologous to the human MBP family , 1995, Cell.

[25]  M. Affolter,et al.  Nuclear interpretation of Dpp signaling in Drosophila , 2001, The EMBO journal.

[26]  M. Levine,et al.  Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. , 2000, Development.

[27]  K. Arora,et al.  schnurri is required for dpp-dependent patterning of the Drosophila wing. , 2000, Developmental biology.

[28]  L. Dobens,et al.  Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses. , 1998, Development.

[29]  Kirby D. Johnson,et al.  Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic , 1997, Nature.

[30]  A. Teleman,et al.  Dpp Gradient Formation in the Drosophila Wing Imaginal Disc , 2000, Cell.

[31]  H. Jäckle,et al.  Transcriptional regulation and spatial patterning in Drosophila. , 1993, Current opinion in genetics & development.

[32]  J. Gurdon,et al.  Cells’ Perception of Position in a Concentration Gradient , 1998, Cell.

[33]  M. Affolter,et al.  schnurri is required for drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1 , 1995, Cell.

[34]  S. Roth,et al.  The role of brinker in mediating the graded response to Dpp in early Drosophila embryos. , 1999, Development.

[35]  J. Massagué TGF-beta signal transduction. , 1998, Annual review of biochemistry.

[36]  L. Raftery,et al.  TGF-beta family signal transduction in Drosophila development: from Mad to Smads. , 1999, Developmental biology.

[37]  S. Cohen,et al.  Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing , 1996, Nature.

[38]  E. Marin,et al.  The spalt gene links the A/P compartment boundary to a linear adult structure in the Drosophila wing. , 1997, Development.

[39]  M. Gonzalez-Gaitan,et al.  Gradient formation of the TGF-beta homolog Dpp. , 2000, Cell.

[40]  S. Holley,et al.  Fish are like flies are like frogs: conservation of dorsal-ventral patterning mechanisms. , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[41]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[42]  T. Tabata,et al.  brinker is a target of Dpp in Drosophila that negatively regulates Dpp-dependent genes , 1999, Nature.

[43]  Wolfgang Driever,et al.  Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen , 1989, Nature.

[44]  G. Pflugfelder,et al.  Control of the Gene optomotor-blind in Drosophila Wing Development by decapentaplegic and wingless , 1996, Science.

[45]  T. Tabata,et al.  Daughters against dpp modulates dpp organizing activity in Drosophila wing development , 1997, Nature.

[46]  M. Strigini,et al.  Formation of morphogen gradients in the Drosophila wing. , 1999, Seminars in cell & developmental biology.

[47]  J. Massagué,et al.  E2F4/5 and p107 as Smad Cofactors Linking the TGFβ Receptor to c-myc Repression , 2002, Cell.

[48]  K. Miyazono,et al.  Interplay of signal mediators of decapentaplegic (Dpp): molecular characterization of mothers against dpp, Medea, and daughters against dpp. , 1998, Molecular biology of the cell.

[49]  Marcos González-Gaitán,et al.  Gradient Formation of the TGF-β Homolog Dpp , 2000, Cell.

[50]  Peter A. Lawrence,et al.  Control of Drosophila body pattern by the hunchback morphogen gradient , 1992, Cell.

[51]  M. Levine,et al.  Regulation of even‐skipped stripe 2 in the Drosophila embryo. , 1992, The EMBO journal.

[52]  L. Wolpert Positional information revisited. , 1989, Development.

[53]  T. Morgan Regeneration in Allolobophora foetida , 1897, Archiv für Entwicklungsmechanik der Organismen.

[54]  Sean B. Carroll,et al.  Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene , 1996, Nature.